EWG urges the FCC to include third party-produced cases and accessories in its cell phone testing policies to ensure that they do not compromise cell phone function and do not prevent a cell phone from complying with the Commission’s exposure limits. Manufacturers should publish the radiation data for a given phone when used directly next to the body and when used with the cases most commonly sold for a specific model.
Also noteworthy is that the studies evaluated radiation exposures in different ways. The NTP looked at “near-field” exposures, which approximate how people are dosed while using cell phones. Ramazzini researchers looked at “far-field” exposures, which approximate the wireless RF radiation that bombards us from sources all around us, including wireless devices such as tablet and laptop computers. Yet they generated comparable results: Male rats in both studies (but not mice or female animals) developed schwannomas of the heart at statistically higher rates than control animals that were not exposed.
An analysis of an "eagerly anticipated" study using rats and mice by the National Toxicology Program indicates that due such issues as the inconsistent appearances of "signals for harm" within and across species and the increased chances of false positives due to the multiplicity of tests, the positive results seen are more likely due to random chance. The full results of the study were released in February 2018.[10]
People can also reduce their exposure by limiting cell-phone use when the cellular signal is weak; when traveling in a high-speed car, bus or train; to stream audio or video; or to download or upload large files. All of these circumstances cause phones to put out higher-than-normal levels of RF energy. Phones also emit RF energy when connected to WiFi or Bluetooth devices, but at lower levels.
EWG also reviewed data in the FCC filings on tests of battery life during a continuous call, measured on an iPhone 4 without a case and on the same phone with an Incipio Le Deux case. This case was chosen because it contains metallic parts (a stainless steel back plate). The presence of metallic components influences the phone’s radiation properties, as the FCC acknowledges (FCC 2001; FCC 2014). Under the test conditions with constant signal strength, an iPhone 4 without a case had 85 percent of battery capacity after a one-hour call and 70 percent after two hours. When the test was repeated with the Incipio Le Deux case, the phone had only 65 percent of battery capacity after a one-hour call and only 10 percent after two hours (Pong 2012).

Today’s report, the final one, was about a decade in the making and is the last of several versions that have been released since preliminary results were presented in May 2016. It represents the consensus of NTP scientists and a group of external reviewers, according to the release. In the future, the NTP plans to conduct studies in smaller exposure chambers and to use biomarkers such as DNA damage to gauge cancer risk. These changes in the experimental setup should mean that future studies will take less time.
“It’s quite informative that the NTP data found evidence of an increased tumor risk in the male rats for glial cells and in the [heart] Schwann cells,” said Joel Moskowitz, director of the Center for Family and Community Health at the Berkeley School of Public Health (who writes about electromagnetic radiation here). “That’s compelling evidence that what we’re seeing in humans — even though the signal is not clear — is highly suggestive, and that there is indeed something real going on with regard to tumor risk in humans.”
Introducing, SafeSleeve for Cell Phone. A patent pending, elegant, and stylish solution that seamlessly combines Anti-Radiation and Anti-RFID technology with an impact and scratch resistant case. We've also added an RFID blocking wallet and a built-in stand for peace of mind and convenience. It’s basically the Swiss Army knife of cell phone cases, but with Anti-Radiation Technology instead of that plastic toothpick. 
Don’t rely on a “radiation shield” or other products claiming to block RF energy, electromagnetic fields, or radiation from cell phones. According to the U.S. Federal Trade Commission, products that interfere with the phone’s signal may force it to work harder and emit more RF energy in order to stay connected, possibly increasing your exposure. It is best to use wired solutions to reduce RF rather than rely on an untested  product.
W. Kim Johnson, a retired physicist and past president of the New Mexico Academy of Science, reviewed the Aires web site for Discovery News and described the material as gibberish, saying that the authors "of the technical description of the ‘Aires' device reads like a random selection of technical terminology. The working description for this device is made up of jargon that, in the end, really says nothing."

The exact source of radiation in a cell phone is from the transmitter, a device located near the antenna that converts audio data into electromagnetic waves. The amount of radiation a cell phone can emit is limited by legal restrictions in the U.S., Canada and Europe. Additionally, the average radiation levels of most mobile phones are available to the public, courtesy of the Federal Communications Commission in the U.S.

(Some common flaws in these studies: The summaries of the evidence weren’t comprehensive, the researchers often didn’t look at the quality of the studies they found, and they failed to do other simple things that would limit bias from creeping in. They also relied on case-control studies, a poor method to determine causality — more on that soon.) So we didn’t include these eight reviews in our analysis.


Then there is non-ionizing radiation, which encompasses the vast majority of light we are exposed to: visible light from lightbulbs, infrared light from an oven and from people, gigahertz light from our wifi, megahertz light to/from our cell phones, and radio waves hitting our car radio. They are not harmful in small doses because one photon does not have enough energy to ionize atoms and/or break apart molecules. In very large doses, non-ionizing radiation can be harmful. For example, a visible light laser with sufficient power (at least several hundred times more than a legal laser pointer) which is concentrated in a small enough spot will burn your skin and do worse things to your eye if it gets in there. And those of us who are old enough, remember the gerbil-in-a-microwave flash animations which went viral 17 years ago [1] as a humorous (but not exactly factual) representation of what would happen if you microwaved a live rodent.


The recent study [5] about cell phones causing cancer in rats should be taken with a grain of salt when making the connection to humans [6]. In particular, the rats in the study were exposed to radiation power densities of 0, 1.5, 3, or 6 W/kg (see p 7 in ref. 4 below). This would be equivalent of the 100 kg human getting up to 600 Watts — basically getting microwaved. As discussed earlier, cell phones are hundreds of times weaker.
Mobile phone use and the development of tumors in the exposure area. Accordingly, Dr. Elisabeth Cardis from the International Agency for Research on Cancer - IARC, started organizing a study (the INTERPHONE) with the participation of 16 sites worldwide, in the purpose of assessing whether use of mobile phones is connected with an increased risk for developing brain tumors (benign and malignant), auditory nerve tumor and salivary gland tumors. The purpose of the cooperation was to reach a satisfactory sample size that could answer the question from the statistical aspect and also to establish a situation where the study represents enough subjects who have used the mobile phone over a relatively long period (at least 10 years). In Israel, the study was conducted by Dr. Siegal Sadetzki, Director of the Cancer Epidemiology and Radiation Unit at the Gertner Institute, Sheba Hospital.

Like we talked about in the last section, SAR limits that are reported are the maximum possible radiation emitted from the device, however, this level is not what is common with the regular use of the device. Just because one cell phone has a higher maximum SAR level, doesn’t mean that the radiation level of normal use isn’t higher or lower than another device with a different maximum SAR level.

Introducing, SafeSleeve for Cell Phone. A patent pending, elegant, and stylish solution that seamlessly combines Anti-Radiation and Anti-RFID technology with an impact and scratch resistant case. We've also added an RFID blocking wallet and a built-in stand for peace of mind and convenience. It’s basically the Swiss Army knife of cell phone cases, but with Anti-Radiation Technology instead of that plastic toothpick. 

Current regulatory standards (SAR Test) only protect us from thermal or heating risks; yet, many hundreds of laboratory studies have found that low-intensity, non-thermal exposure to cell phone radiation can promote carcinogenic mechanisms. Moreover, research on humans has found that 25 years of mobile phone use is associated with a three-fold risk of brain cancer.  –Joel M. Moskowitz, Ph.D. School of Public Health. University of California, Berkeley
There is only one legitimate method of measuring cell phone radiation recognized by every major health authority and government in the world as well as by the cell phone industry itself, referred to as "SAR". SAR testing measures the "Specific Absorption Rate" of radiation at multiple depths and locations on the head and body in order to quantify how much radiation is actually penetrating it with and without certain safety devices. You can see a SAR test of the R2L device by watching the video below.
Of course, scientific seesawing like that doesn’t provide a lot of clarity or confidence for the 90 percent of American adults and roughly 80 percent of teens who report having a cell phone. So how concerned should you be about cell-phone radiation? Consumer Reports’ health and safety experts conducted a thorough review of the research and offer some guidance.
Studies in people: Another type of study looks at cancer rates in different groups of people. Such a study might compare the cancer rate in a group exposed to something like cell phone use to the rate in a group not exposed to it, or compare it to what the expected cancer rate would be in the general population. But sometimes it can be hard to know what the results of these studies mean, because many other factors that might affect the results are hard to account for.
I hope anyone with a damaged RF safe accessory takes the time to call the phone number on the top of RF Safe’s website. The hard plastic cases in six colors with flip covers shielded by hand at RF safe are part of each cases product lifecycle – the case shown in review is a well-tested 1st gen case. Hard plastic case with shielding applied by hand.
Today, the computer and phone have merged into one device that fits in the palm of your hand. A smartphone is essentially a small computer, yet has many times the computing power of traditional computers. There are no cords to connect you to a base. When turned on in your pocket or being used against your head, the cell phone touches some of the most sensitive parts of the body. Although the cell phone produces lower levels of radiation then past computers, they are now used much closer to the body and for longer periods of time, thus creating more health risks than in the past.
To find out about the state of research on the link between phones and cancer, we spoke with Jonathan Samet, dean of the Colorado School of Public Health and an expert in phone radiation who led a World Health Organization working group on the subject. In 2011, the WHO group deemed phone radiation “possibly carcinogenic,” which is less certain than other classifications, but isn’t an outright “no” either. Six years later, Samet said the evidence in either direction is still mixed and that for the time being, there remains “some indication” of risk.

Just take a moment and think about how much you’re using your phone every single day. Answering calls, discussing plans, talking about your day with friends, playing games, watching videos and using apps, only scratch the surface of how much you’re actually using your phone. You might even have it by your bedside or on your nightstand when you go to bed at night. It’s time you stopped exposing yourself to dangerous EMF radiation and protected yourself from the dire consequences of using an unshielded smartphone or tablet.

It also means regulators need to make sure their policies reflect new levels of exposure. The Federal Communications Commission currently oversees cellphone safety and sets the limits for how much radiation people should be exposed to. (This is measured by the specific absorption rate — the rate at which the body absorbs radio frequency energy — and the current limit for cellphones is 1.6 watts of energy per kilogram of tissue. The whole-body threshold is a SAR value of 0.08 watts per kilogram, and the tower radiation limit is 10 watts per square meter.)
The Working Group indicated that, although the human studies were susceptible to bias, the findings could not be dismissed as reflecting bias alone, and that a causal interpretation could not be excluded. The Working Group noted that any interpretation of the evidence should also consider that the observed associations could reflect chance, bias, or confounding rather than an underlying causal effect. In addition, the Working Group stated that the investigation of risk of cancer of the brain associated with cell phone use poses complex methodologic challenges in the conduct of the research and in the analysis and interpretation of findings.
×