As Jonathan Samet — the dean of the Colorado School of Public Health, who advised the World Health Organization on cellphone radiation and cancer — told me, you can argue anything based on the science we currently have “because there’s not enough evidence to start with.” Actually, there’s not enough high-quality evidence. Before we get into why, and what we know, we need a quick primer on cellphone radiation.
Think of it as a luxurious pillow case for your phone. Soft and attractive, it protects your phone like an ordinary phone case, PLUS innovative near field shielding material built-in to one side shields your body while carrying the phone and shields your head while making calls. BlocSock™ has two compartments, the main compartment covers the whole phone for transport. During calls, put the phone in the smaller “kangaroo style” pouch.
An analysis of data from NCI's Surveillance, Epidemiology, and End Results (SEER) Program evaluated trends in cancer incidence in the United States. This analysis found no increase in the incidence of brain or other central nervous system cancers between 1992 and 2006, despite the dramatic increase in cell phone use in this country during that time (22).
Transmitters, including cell phones, emit radio signals on more than the assigned frequency. These other signals on other frequencies are “harmonics” and/or “noise” and/or “dirty” signals from less than optimal transmitters, antennae, and/or resonating frequencies emitted from metallic objects in close proximity to the transmitter, like the other components of the cell phone.
A cellular phone is basically a radio that sends signals on waves to a base station. The carrier signal generates two types of radiation fields: a near-field plume and a far-field plume. Living organisms, too, generate electromagnetic fields at the cellular, tissue, organ, and organism level; this is called the biofield. Both the near-field and far-field plumes from cell phones and in the environment can wreak havoc with the human biofield, and when the biofield is compromised in any way, says Dr. Carlo, so is metabolism and physiology.
The frequency of radiofrequency electromagnetic radiation ranges from 30 kilohertz (30 kHz, or 30,000 Hz) to 300 gigahertz (300 GHz, or 300 billion Hz). Electromagnetic fields in the radiofrequency range are used for telecommunications applications, including cell phones, televisions, and radio transmissions. The human body absorbs energy from devices that emit radiofrequency electromagnetic radiation. The dose of the absorbed energy is estimated using a measure called the specific absorption rate (SAR), which is expressed in watts per kilogram of body weight.
×