Parents and consumer advocacy groups occasionally capture attention for voicing concerns about cellphones and other types of non-ionizing radio-frequency radiation exposure, such as the energy emitted from wifi routers in schools. In some cases, they have exaggerated what we know about the risks to kids, and rarely note that cellphones are also just one of many radiation sources we all live with. (Even the Earth itself, the air we breathe, and the sun and stars in our galaxy constantly give off radiation.)
Instead, we have to rely on “observational” data, tracking people’s real-world cellphone use and their disease incidence. Studies using observational data tend to be weaker, messier, and less clear-cut than experimental studies like RCTs. They can only tell us about associations between phenomena, not whether one thing caused another to happen. So that opens up a lot of the ambiguity we’re going to delve into next.
The cellular phone industry was born in the early 1980s, when communications technology that had been developed for the Department of Defense was put into commerce by companies focusing on profits. This group, with big ideas but limited resources, pressured government regulatory agencies—particularly the Food and Drug Administration (FDA)—to allow cell phones to be sold without pre-market testing. The rationale, known as the “low power exclusion,” distinguished cell phones from dangerous microwave ovens based on the amount of power used to push the microwaves. At that time, the only health effect seen from microwaves involved high power strong enough to heat human tissue. The pressure worked, and cell phones were exempted from any type of regulatory oversight, an exemption that continues today. An eager public grabbed up the cell phones, but according to Dr. George Carlo, “Those phones were slowly prompting a host of health problems.”

In 2015, the European Commission Scientific Committee on Emerging and Newly Identified Health Risks concluded that, overall, the epidemiologic studies on cell phone radiofrequency electromagnetic radiation exposure do not show an increased risk of brain tumors or of other cancers of the head and neck region (2). The Committee also stated that epidemiologic studies do not indicate increased risk for other malignant diseases, including childhood cancer (2).
Who wants to make his own shielded passport or credit card sleeve? Or line a purse, wallet, cellphone case or backpack? Add a shielding liner to a pocket? Wrap a wifi node to block radiation output? Repair a fencing lame? Shield a part of a circuit board? Make an RF gasket? Shield your homeopathy bottles? Attach a ground cord to a fabric? There are hundreds of uses for this versatile shielding patch. A peel-off paper backing reveals a super strong conductive adhesive that keeps the patch where you put it. Easily cut to any shape with ordinary scissors, this metalized fabric is conductive on both sides, completely flexible with no stretch, and solid black in color. 40-50 dB from 10 MHz to 10 GHz. You get two pieces, each 5.5x8 inches. Not intended to adhere directly to skin. Do not machine wash.

There is a degree of controversy surrounding the implications of cell phone radiation, and what it means to our health. Some research has suggested that the type of radio frequencies used by cell phones can speed up the progression of cancer in laboratory test animals, but it has proven difficult to replicate these results. It is known that radiation from cell phones can affect pacemakers, but the main concern is related to the fact that most cell phone users hold the phone against their ear. If significant levels of radiation enter the tissues of the head in this way over time, some worry that this can increase the likelihood of brain tumors and related conditions.

But not everyone is unconcerned. In May 2015, a group of 190 independent scientists from 39 countries, who in total have written more than 2,000 papers on the topic, called on the United Nations, the World Health Organization, and national governments to develop stricter controls on cell-phone radiation. They point to growing research—as well as the classification of cell-phone radiation as a possible carcinogen in 2011 by the International Agency for Research on Cancer, part of the WHO—suggesting that the low levels of radiation from cell phones could have potentially cancer-causing effects.
Specific Absorption Rate is an indicator of how much EMF radiation body tissue absorbs when you’re using a cell phone and is one way to measure and compare the harm of different devices. In this article, I wanted to provide a resource to compare and contrast the SAR levels of many popular phones and talk a bit about what Specific Absorption Rate is, and how we can use it.

The Ministry of Health Medical Administration circular (from 2002) addressed to hospital Directors, states that use of mobile phones and wireless handheld transceivers (walkie talkie) in the hospital, must on the one hand guarantee the patient’s wellbeing and safety, and on the other hand, allow the staff, the patients and their families to enjoy the service benefits. This circular outlines the areas where use of mobile phones is strictly forbidden and areas where use is permitted (while keeping an appropriate safety distance from areas where life-supporting equipment or systems are operated).
This is a 2 pieces of plastic sandwiched together by glue. Don't believe me? Take it apart. This item works no better than the existing case on your phone. If you are that concerned with cellphone radiation, you should be equally concerned about the cheap plastic and toxic glue that this is comprised of. Also know the fact that they've stolen $25 from your wallet when you purchase this hokey product...Technology at it's finest.

Dr. Carlo and his team developed new exposure systems that could mimic head-only exposure to EMR in people, as those were the only systems that could approximate what really happened with cell phone exposure. Those exposure systems were then used for both in vitro (laboratory) and in vivo (animal) studies. The in vitro studies used human blood and lymph tissue in test tubes and petri dishes that were exposed to EMR. These studies identified the micronuclei in human blood, for example, associated with cell phone near-field radiation. The in vivo studies used head only exposure systems and laboratory rats. These studies identified DNA damage and other genetic markers.
You’ll notice radiation is split into two categories here: ionizing and non-ionizing. The waves emitted from radios, cellphones and cellphone towers, Wi-Fi routers, and microwaves are referred to as “radio-frequency” radiation. That’s a type of “non-ionizing” radiation, since it doesn’t carry enough energy to “ionize” — or strip electrons from atoms and molecules. (Other sources of non-ionizing radiation, as you can see in our chart, include visible and infrared light.)

Using the gauss meter at varied locations, you can easily detect electromagnetic radiation “hot spots” where exposure to these ominous frequencies is the greatest. Armed with this crucial information, you can then avoid these areas, re-arranging furniture or electronic devices as needed in order to avoid unnecessary exposure to electromagnetic radiation.

With the background levels of information-carrying radio waves dramatically increasing because of the widespread use of cell phones,Wi-Fi, and other wireless communication, the effects from the near and far-fields are very similar. Overall, says Dr. Carlo, almost all of the acute and chronic symptoms seen in electrosensitive patients can be explained in some part by disrupted intercellular communication. These symptoms of electrosensitivity include inability to sleep, general malaise, and headaches. Could this explain the increase in recent years of conditions such as attention-deficit hyperactivity disorder (ADHD), autism, and anxiety disorder?
Note: Although it is true that cell phones emit low frequency magnetic fields that can be measured in milliGauss, they also emit high frequency microwave radiation which is what all the concern (and publicity) is about, and which the products below are designed to shield. Many clients have contacted us seeking a shield for BOTH magnetic fields and microwaves for their phone. Such a shield does not currently exist. To reduce your exposure to BOTH types of radiation, use an airtube headset and keep the phone itself at a distance.
Nice quality vinyl bumper sticker is a not-so-gentle reminder to fellow motorists of the one of the many dangers of cellphone use: distraction! If you ever get the chance, you can also explain the other hazards as well: reaction time, increased permeability of the blood-brain barrier, and possibly brain tumors. Good for cars, trucks, bikes, skates and just about any other moving vehicle.
Only 0.010 inch thick, PaperSHIELD is flexible and can be easily cut with a scissors and shaped by hand into simple or very complex shapes. High saturation and moderate permeability make this ideal for shielding weak magnets, or stronger magnets with many layers of shielding. This material is particularly suited for achieving precise levels of partial shielding as you can add exactly the right number of layers to achieve the desired result. White paper on one side can be imprinted (by you). Peel and stick adhesive on the other side permits easy and semi-permanent mounting almost anywhere. Magnets will stick to it nicely.
Today’s report, the final one, was about a decade in the making and is the last of several versions that have been released since preliminary results were presented in May 2016. It represents the consensus of NTP scientists and a group of external reviewers, according to the release. In the future, the NTP plans to conduct studies in smaller exposure chambers and to use biomarkers such as DNA damage to gauge cancer risk. These changes in the experimental setup should mean that future studies will take less time.
These experimental findings raise new questions as to the potential for radiofrequency radiation to result in cellular changes and offer potential avenues for further laboratory studies. Cancers in the heart are extremely rare in humans, where the primary outcomes of potential concern with respect to radiofrequency radiation exposure from cell phones are tumors in the brain and central nervous system. Schwann cells of the heart in rodents are similar to the kind of cells in humans that give rise to acoustic neuromas (also known as vestibular schwannomas), which some studies have suggested are increased in people who reported the heaviest use of cell phones. The NTP has stated that they will continue to study this exposure in animal models to further advance our understanding of the biological underpinnings of the effects reported above.
Anti-radiation or radiation blocking or phone shield cases. Do they Work? SafeSleeve, DefenderShield, Vest, Alara, Pong, Reach and ShieldMe  and other EMF protection phone cases claim to block the radiation from your cellphone or smartphone. Anti-radiation cellphone case brands make enticing claims like this: ". . .eliminate up to 99% of the harmful radiation coming from the phone!"
As to increases in brain tumors tied to cell phone use, it’s too early to tell due to a lack of hard data, says Dr. Carlo. “We’re never going to see that in time to have it matter. Here in the US, we’re six years behind in getting the brain tumor database completed, and currently the best data are from 1999. By the time you see any data showing an increase, the ticking time bomb is set.”
“If you're looking for ways to limit your exposure to the electromagnetic emissions from your cell phone, know that, according to the FTC, there is no scientific proof that so-called shields significantly reduced exposure from these electromagnetic emissions. In fact, products that block only the earpiece—or another small portion of the phone—are totally ineffective because the entire phone emits electromagnetic waves. What's more, these shields may interfere with the phone's signal, cause it to draw even more power to communicate with the base station, and possibly emit more radiation.”

First, you must have a proper meter. To check for magnetic field emissions, an AC Gaussmeter will work. Most AC gaussmeters will have an internal probe. Simply position the gaussmeter on the phone. Note carefully where the meter is positioned. Make a call and watch the readings. Notice the highest and lowest readings, and make a mental note of the "average" reading. Now, insert the magnetic shield, and repeat.
The dangers of driving and texting are old news; if someone were to be harmed by their cellphone’s radiation, though, that would make headlines because novelty grabs people’s attention. In psychological experiments where people have to choose images, they gravitate towards ones they haven’t seen before — a phenomenon known as the novelty bonus. So if I wanted to grab a reader’s attention, I’d bet on a hypothetical headline that said “For the first time, cellphone radiation causes brain cancer in humans” over “Another person has died today from driving and texting.”
As to increases in brain tumors tied to cell phone use, it’s too early to tell due to a lack of hard data, says Dr. Carlo. “We’re never going to see that in time to have it matter. Here in the US, we’re six years behind in getting the brain tumor database completed, and currently the best data are from 1999. By the time you see any data showing an increase, the ticking time bomb is set.”
✅ PROTECT YOUR HEAD & BODY FROM RADIATION: It is scientifically proven that it’s best to keep your phone away from your body because the radiation exposure often exceeds FCC regulations. That’s why our emf protection cell phone radiation shield will immediately negate symptoms such as headaches, dizziness, memory loss, anxiety, fatigue and much more.

A 2012 study by NCI researchers (25) compared observed glioma incidence rates in U.S. SEER data with rates simulated from the small risks reported in the Interphone study (6) and the greatly increased risk of brain cancer among cell phone users reported in the Swedish pooled analysis (19). The authors concluded that overall, the incidence rates of glioma in the United States did not increase over the study period. They noted that the US rates could be consistent with the small increased risk seen among the subset of heaviest users in the Interphone study. The observed incidence trends were inconsistent with the high risks reported in the Swedish pooled study. These findings suggest that the increased risks observed in the Swedish study are not reflected in U.S. incidence trends.