Instead, we have to rely on “observational” data, tracking people’s real-world cellphone use and their disease incidence. Studies using observational data tend to be weaker, messier, and less clear-cut than experimental studies like RCTs. They can only tell us about associations between phenomena, not whether one thing caused another to happen. So that opens up a lot of the ambiguity we’re going to delve into next.
The program began, but Dr. Carlo soon discovered that everyone involved had underlying motives.“The industry wanted an insurance policy and to have the government come out and say everything was fine. The FDA, which looked bad because it didn’t require pre-market testing, could be seen as taking steps to remedy that. By ordering the study, law makers appeared to be doing something. Everyone had a chance to wear a white hat.”

The tricky part about measuring the radiation from a cell phone is that the emission strength varies widely over time. There will be strong bursts of varying intensity, followed by quiet periods. This makes it hard to compare "apples to apples". Also, because you are measuring up close to the source, you must use a near field meter AND you must maintain the position of the meter very precisely.
By not formally reassessing its current limit, FCC cannot ensure it is using a limit that reflects the latest research on RF energy exposure. FCC has also not reassessed its testing requirements to ensure that they identify the maximum RF energy exposure a user could experience. Some consumers may use mobile phones against the body, which FCC does not currently test, and could result in RF energy exposure higher than the FCC limit.

Specific Absorption Rate (SAR) is an indicator for calculating the level of radiation absorbed in the body. This indicator represents the rate of energy absorption by the tissue and is expressed in units of Watt/kg. The Consumer Protection Regulations (information on non-ionizing radiation from mobile phones) of 2002, stipulate the duty to label the product, specifying the radiation level of the phone’s model and the maximum permitted radiation level. This regulation allows to compare the emitted radiation level between different instruments and to take this into consideration when weighing the factors determining the choice of a new instrument at the time of its purchase.
The 13-country INTERPHONE study, the largest case-control study done to date, looked at cell phone use among more than 5,000 people who developed brain tumors (gliomas or meningiomas) and a similar group of people without tumors. Overall, the study found no link between brain tumor risk and the frequency of calls, longer call time, or cell phone use for 10 or more years. There was a suggestion of a possible increased risk of glioma, and a smaller suggestion of an increased risk of meningioma, in the 10% of people who used their cell phones the most. But this finding was hard to interpret because some people in the study reported implausibly high cell phone use, as well as other issues. The researchers noted that the shortcomings of the study prevented them from drawing any firm conclusions, and that more research was needed.
It'd be wrong to say that there is no evidence of harm at all. In fact, the re-classification by the IARC came about in the first place because the Working Group contributing to the Interphone study acknowledged "limited evidence" of an increase in glioma (a type of tumour, commonly found in the brain) among phone users in one of the studies. In this study, which concluded in 2004, researchers found that participating phone owners who had used their handsets for calls for more than 30-minutes a day, over a period of ten years, had an increase incidence of glioma.
Perhaps more importantly, what types of radiation are causing, or likely to cause, or are suspected of causing, harm to humans? Is it the “harmonics” from the transmitter? Is it the RF from the circuitry? Is it the primary frequency on which the cell phone operates? This is important to understand. If the problem is the primary frequency on which the cell phone operates then forget the case and ditch the cell phone.
In 2015, the European Commission Scientific Committee on Emerging and Newly Identified Health Risks concluded that, overall, the epidemiologic studies on cell phone radiofrequency electromagnetic radiation exposure do not show an increased risk of brain tumors or of other cancers of the head and neck region (2). The Committee also stated that epidemiologic studies do not indicate increased risk for other malignant diseases, including childhood cancer (2).
I debated whether to give it 3 or 4 stars: on features, speed of delivery, and quality of construction, it definitely deserves 4 stars. If I can measure and verify the emf reduction, then I will change the rating to 5 stars. Since the whole point of using it is to block excess em radiation, I can't really give it 5 stars without more proof that it really does so.
Still think Pong’s SAR testing prove you are safer? Take this for example, the Samsung Galaxy Note 5 SM-920V FCC ID A3LSMN920V (Official FCC Doc) made for Verizon has an FCC measured SAR of only 0.21 W/kg (watts per kilogram) and the Apple iPhone 6 Plus exposes a user’s head to a whopping 1.18 W/kg FCC ID: BCG – E2817 Apple iPhone 6 SAR  (Official Doc Page 138).  That’s a dramatic difference of several hundred percent from highest SAR to lowest SAR on these high-end smartphone devices.
Safe Cell was successfully tested by an Independent laboratory. The Shielding Effectiveness test as a cell phone radiation protection shield, was conducted by The California Institute of Material Sciences which results proved that "Safe Cell possesses Shielding Effectiveness in the cell phone test frequency range 0.800 GHz to 10.525 GHz". (click here to view the full test report)
But the results of these two rat studies align with those of the biggest cell phone-radiation human study to date, INTERPHONE. The INTERPHONE study, published in 2011, was a coordinated effort by researchers at 16 institutions across 13 countries, and found that the heaviest mobile phone users were more likely to develop glioma—the same type of brain cancer the NTP study found in the male rats. “So there’s a concordance between the animal and human data,” Melnick says.
A large prospective (forward-looking) study of nearly 800,000 women in the UK examined the risk of developing brain tumors over a 7-year period in relation to self-reported cell phone use at the start of the study. This study found no link between cell phone use and brain tumors overall or several common brain tumor subtypes, but it did find a possible link between long-term cell phone use and acoustic neuromas.
That brings us back to the main question here: Do cellphones cause tumors? We chose to focus this story on cancer risk, since it seems like the most common health concern people have about cellphones. But before we get to the answers, we need to take another (brief) detour to explain how this science has been done with human subjects. To do that, we need to zoom in on a nerdy subject: research methods.
Phone radiation isn’t like the radiation from, say, a nuclear meltdown. That’s what’s known as “ionizing” radiation — it’s high energy and capable of damaging your DNA, which researchers have determined leads to cancer. Phones emit a much lower energy radiation (lower even than visible light) that’s considered to be “non-ionizing.” We know non-ionizing radiation doesn’t damage DNA the way that ionizing radiation does. But the question remains whether it could still react with the body in some other way that might lead to problems from longterm exposure.

The study specifically used 2G and 3G frequencies — not the frequencies used on more advanced 4G or 5G networks. Researchers exposed the rodents’ entire bodies to the radiowaves for more than nine hours per day, for up to two years. (“A rat that is 2 years old is roughly equivalent to a 70-year-old person,” STAT News reports.) These exposure levels were much higher than what people would experience, John Bucher, senior scientist with the NTP, says in a statement. “So, these findings should not be directly extrapolated to human cell phone usage,” he says.
Take a closer look at the product claims. Many refer to their “shielding technology” and not the product itself. In many cases, the “FCC Certified” labs they cite are actually testing how much RF the raw shielding material can block. They’re testing the materials used in the products. They’re not testing how much RF the actual products block while on a real-world phone.
The guidelines, issued last week, note that “some laboratory experiments and human health studies have suggested the possibility that long-term, high use of cell phones may be linked to certain types of cancer and other health effects.” These include brain cancer, tumors of the acoustic nerve and salivary glands, lower sperm count, headaches and effects on learning, memory, hearing, behavior and sleep.

The peer reviewers did have some quibbles with the study; some wished it could have lasted longer (the rodents were exposed to radiation for two years) to catch later-developing tumors, for example, but others on the panel noted that the longer a rodent lives, the more likely it is to develop tumors regardless of radiation, making it harder to find the signal in the noise. Others wanted the researchers to have dissected the rodent brains more than they did, to seek hard-to-find tumors. But they noted that science is an iterative process; the study wasn’t perfect, but it’s better than anything that’s been done so far.
Once the surface is completely dry, the surface will have a visible residue remaining on the glass. Take the same microfiber and remove the residue by rubbing the surface until it is shiny and smear free. Do not use any other alcohol or cleaning agent on the glass and apply a new layer of the Ti22 Liquid Titanium Shield every 6-12 months depending on how heavy you use the phone or tablet.
What are the health effects of mobile phones and wireless radiation? While Australia has led the world in safety standards, including compulsory seat-belt legislation, plain packaging on cigarettes, and product and food disclosure legislation, it falls behind in addressing the significant issues associated with mobile phone use. In this Dean’s Lecture, epidemiologist and electromagnetic radiation expert, Dr Devra Davis, will outline the evolution of the mobile phone and smartphone, and provide a background to the current 19 year old radiation safety standards (SAR), policy developments and international legislation. New global studies on the health consequences of mobile/wireless radiation will be presented, including children’s exposure and risks.
Researchers have carried out several types of epidemiologic studies in humans to investigate the possibility of a relationship between cell phone use and the risk of malignant (cancerous) brain tumors, such as gliomas, as well as benign (noncancerous) tumors, such as acoustic neuroma (tumors in the cells of the nerve responsible for hearing that are also known as vestibular schwannomas), meningiomas (usually benign tumors in the membranes that cover and protect the brain and spinal cord), and parotid gland tumors (tumors in the salivary glands) (3).
×