Stephen Chanock, who directs the Division of Cancer Epidemiology and Genetics at the National Cancer Institute, remains skeptical, however. Cancer monitoring by the institute and other organizations has yet to show increasing numbers of brain tumors in the general population, he says. Tracking of benign brain tumors, such as acoustic neuromas, was initiated in 2004 by investigators at the institute’s Surveillance, Epidemiology and End Results program, which monitors and publishes statistics on cancer incidence rates. According to Chanock’s spokesperson, the acoustic neuroma data “haven’t accumulated to the point that we can say something meaningful about them.”
If you're looking for ways to limit your exposure to the electromagnetic emissions from your cell phone, know that, according to the FTC, there is no scientific proof that so-called shields significantly reduce exposure from these electromagnetic emissions. In fact, products that block only the earpiece – or another small portion of the phone – are totally ineffective because the entire phone emits electromagnetic waves. What's more, these shields may interfere with the phone's signal, cause it to draw even more power to communicate with the base station, and possibly emit more radiation.
The bulk of scientific evidence says that cellphone radiation doesn’t harm humans, according to the Food and Drug Administration: our cellphones are much more likely to kill us when we glance down at them while driving. But people are bad at judging risk. And the word “radiation” combined with the fact that we can’t see or control the invisible forces emanating from our cellphones becomes a perfect recipe for fear.
An analysis of an "eagerly anticipated" study using rats and mice by the National Toxicology Program indicates that due such issues as the inconsistent appearances of "signals for harm" within and across species and the increased chances of false positives due to the multiplicity of tests, the positive results seen are more likely due to random chance. The full results of the study were released in February 2018.[10]
All cell phones emit Electromagnetic Radiation (EMR). Most people are aware of Radio Frequency (RF) (also known as Microwave) signals that connect your cell phone to a cell tower, a WiFi router and Bluetooth devices. These cell phone signals are always on. But did you know that cell phones also emit Extremely Low Frequency (ELF) radiation produced by the cell phone’s internal components?
The government’s policies must change. Cell phone users should make their voices heard to prompt the FCC and manufacturers of cell phones and cases to ensure that these accessories never increase and, to the extent possible, decrease, users’ radiation exposure. At minimum, the FCC must take cell phone cases into consideration when it updates its standards to ensure that the use of a case will not expose people to more radiation than its legal SAR limit.  

Note: Although it is true that cell phones emit low frequency magnetic fields that can be measured in milliGauss, they also emit high frequency microwave radiation which is what all the concern (and publicity) is about, and which the products below are designed to shield. Many clients have contacted us seeking a shield for BOTH magnetic fields and microwaves for their phone. Such a shield does not currently exist. To reduce your exposure to BOTH types of radiation, use an airtube headset and keep the phone itself at a distance.
In 2011, two small studies were published that examined brain glucose metabolism in people after they had used cell phones. The results were inconsistent; whereas one study showed increased glucose metabolism in the region of the brain close to the antenna compared with tissues on the opposite side of the brain (26), the other study (27) found reduced glucose metabolism on the side of the brain where the phone was used.
California officials issued the new report in response to increasing smartphone use in the United States, especially among children. About 95% of Americans own a cell phone, according to a press release from the California Department of Public Health, and the average age for a first cell phone is now 10 years old. About 12% of people use their smartphones for daily Internet access.
The most common effect is heat generation (though non-thermal biological harm has also been demonstrated), which can alter the characteristics of various bodily tissues depending on the amount of radiation present and its ability to penetrate the body. Tissue damage can promote the cellular mutations and increase your long-term risk of developing cancer.
✅ PROTECT YOUR HEAD & BODY FROM RADIATION: It is scientifically proven that it’s best to keep your phone away from your body because the radiation exposure often exceeds FCC regulations. That’s why our emf protection cell phone radiation shield will immediately negate symptoms such as headaches, dizziness, memory loss, anxiety, fatigue and much more.
Since 2011 RF radiation has been classified as a Group 2B “possible” human carcinogen by the International Agency on Cancer (IARC), an agency of the World Health Organization. Based on the new animal findings, and limited epidemiological evidence linking heavy and prolonged cell phone use with brain gliomas in humans, Fiorella Belpoggi, director of research at the Ramazzini Institute and the study’s lead author, says IARC should consider changing the RF radiation designation to a “probable” human carcinogen. Even if the hazard is low, billions of people are exposed, she says, alluding to the estimated number of wireless subscriptions worldwide. Véronique Terrasse, an IARC spokesperson, says a reevaluation may occur after the NTP delivers its final report.

You’ll notice radiation is split into two categories here: ionizing and non-ionizing. The waves emitted from radios, cellphones and cellphone towers, Wi-Fi routers, and microwaves are referred to as “radio-frequency” radiation. That’s a type of “non-ionizing” radiation, since it doesn’t carry enough energy to “ionize” — or strip electrons from atoms and molecules. (Other sources of non-ionizing radiation, as you can see in our chart, include visible and infrared light.)
Pong’s claims for its case have stood up to the scrutiny of Wired magazine and the Better Business Bureau (Advertising Self-Regulation Council 2012; Ganapati 2009). In tests conducted by Cetecom, a cell phone radiation certification lab, and observed by a reporter from Wired magazine, an iPhone 3G tested without a case had a maximum SAR of 1.18 W/kg when held at the ear. The same phone tested with a Pong case had a maximum SAR of 0.42 W/kg (Ganapati 2009).  
The first one is easy, cellular frequencies vary between 450–2000MHz, but 800 or 900 MHz is the most common. The power emitted by a cell phone varies over the course of the call (higher when making initial contact, which lasts a few seconds). It can go up to 2 Watts at the start of a call, and can go down to .02 Watts during optimal operation [2]. Of course, most people barely use cell phones for calls, but I am using this example as a worst case scenario, because the phone is not right by your head when you are browsing Tinder.
Some products ( for example) are tested using a piece of shielding material in a laboratory test jig. These tests legitimately show the amount of radiation which penetrates the shield, but results will be very different when compared to putting a small amount of the same shield on a large transmitter like a cellphone. Remember, the entire phone radiates. Placing a small amount of shielding, even if it is an effective shielding material, only shields that small area at best. Think about this analogy: no light will penetrate a penny as it is a very effective light shield, but it is silly to think that holding a penny up to the sun will put you in darkness.
So you are careful about NOT putting your radiation emitting mobile near your head. That’s good. But think about this: what body parts get the radiation when you put the thing on your pocket, bra, hat, purse, holster or elsewhere on your body? Now your vital and sometimes private organs are basically in contact with the source of the microwaves, getting the largest dose possible. Pocket Sticker is a high performance shielding patch that you stick onto your clothing which reflects that radiation away from your body.
Of course, scientific seesawing like that doesn’t provide a lot of clarity or confidence for the 90 percent of American adults and roughly 80 percent of teens who report having a cell phone. So how concerned should you be about cell-phone radiation? Consumer Reports’ health and safety experts conducted a thorough review of the research and offer some guidance.
But the results of these two rat studies align with those of the biggest cell phone-radiation human study to date, INTERPHONE. The INTERPHONE study, published in 2011, was a coordinated effort by researchers at 16 institutions across 13 countries, and found that the heaviest mobile phone users were more likely to develop glioma—the same type of brain cancer the NTP study found in the male rats. “So there’s a concordance between the animal and human data,” Melnick says.
The cell phone industry is fully aware of the dangers. In fact, enough scientific evidence exists that some companies’ service contracts prohibit suing the cell phone manufacturer or service provider, or joining a class action lawsuit. Still, the public is largely ignorant of the dangers, while the media regularly trumpets new studies showing cell phones are completely safe to use. Yet, Dr. Carlo points out, “None of those studies can prove safety, no matter how well they’re conducted or who’s conducting them.” What’s going on here? While the answer in itself is simplistic, how we got to this point is complex.
Cell-phone designs have changed a lot since the studies described above were completed. For example, the antennas—where most of the radiation from cell phones is emitted—are no longer located outside of phones near the top, closest to your brain when you talk, but are inside the phone, and they can be toward the bottom. As a result, the antenna may not be held against your head when you’re on the phone. That’s important because when it comes to cell-phone radiation, every milli­meter counts: The strength of exposure drops dramatically as the distance from your body increases.

RadiArmor’s anti-radiation material blocks over 99% of EMF radiation. However, since covering your entire phone with this material would result in no reception, only the front cover is lined with this material. This still provides an effective EMF reduction of 91% with no loss in reception. The front cover has a hole for sound to pass through so that you can close the case and talk at the same time.

Studies in people: Another type of study looks at cancer rates in different groups of people. Such a study might compare the cancer rate in a group exposed to something like cell phone use to the rate in a group not exposed to it, or compare it to what the expected cancer rate would be in the general population. But sometimes it can be hard to know what the results of these studies mean, because many other factors that might affect the results are hard to account for.

Use the speaker mode on the phone or a hands-free device such as a corded or cordless earpiece. This moves the antenna away from your head, which decreases the amount of RF waves that reach the head. Corded earpieces emit virtually no RF waves (although the phone itself still emits small amounts of RF waves that can reach parts of the body if close enough, such as on the waist or in a pocket). Bluetooth® earpieces have an SAR value of around 0.001 watts/kg (less than one thousandth the SAR limit for cell phones as set by the FDA and FCC).
Radiofrequency radiation is a form of electromagnetic radiation. Electromagnetic radiation can be categorized into two types: ionizing (e.g., x-rays, radon, and cosmic rays) and non-ionizing (e.g., radiofrequency and extremely low frequency, or power frequency). Electromagnetic radiation is defined according to its wavelength and frequency, which is the number of cycles of a wave that pass a reference point per second. Electromagnetic frequencies are described in units called hertz (Hz).