In one type of study, called a case–control study, cell phone use is compared between people with these types of tumors and people without them. In another type of study, called a cohort study, a large group of people who do not have cancer at study entry is followed over time and the rate of these tumors in people who did and didn’t use cell phones is compared. Cancer incidence data can also be analyzed over time to see if the rates of brain tumors changed in large populations during the time that cell phone use increased dramatically. These studies have not shown clear evidence of a relationship between cell phone use and cancer. However, researchers have reported some statistically significant associations for certain subgroups of people.
“The evidence so far doesn’t prove that cell phones cause cancer, and we definitely need more and better research,” says Michael Hansen, Ph.D., a senior scientist at Consumer Reports. “But we feel that the research does raise enough questions that taking some common-sense precautions when using your cell phone can make sense.” Specifically, CR recommends these steps:
EWG believes that cell phone testing procedures should include cases and other accessories, whether supplied by the phone manufacturer or a third party. Since these cases and accessories have no other use and have the potential to influence the phone’s transmitting and receiving activity and the amount of radiation that a user might encounter, they fall within FCC’s authority.
Dr. Carlo, however, refused to be an easy target. He quickly recruited a group of prominent scientists to work with him, bulletproof experts owning long lists of credentials and reputations that would negate any perception that the research was predestined to be a sham. He also created a Peer Review Board chaired by Harvard University School of Public Health’s Dr. John Graham, something that made FDA officials more comfortable since, at the time, the agency was making negative headlines due to the breast implant controversy. In total, more than 200 doctors and scientists were involved in the project.
In addition to the increased brain cancer risk, in male rats there was also “clear evidence” of a link between the radiation and malignant heart tumors and “some evidence” of a link to adrenal-gland tumors, according to the release. In mice and in female rats, however, the link between radiation and tumors was “equivocal,” or uncertain. The hierarchy, from most to least certain, of characterizations used by the NTP is: “clear evidence”; “some evidence”; “equivocal evidence”; and “no evidence.”Today’s cellphones use higher-frequency radiation that is less able to penetrate animal tissues than the radiation used in the study, the Times reports. Further, since cellphones became popular, epidemiologists have not observed an overall increase in the frequency of brain cancers known as gliomas in humans. 
There is great variability in survival by brain tumor subtype, and by age at diagnosis. Overall, the 5-year relative survival for brain cancers diagnosed from 2008 through 2014 was 33.2% (49). This is the percentage of people diagnosed with brain cancer who will still be alive 5 years after diagnosis compared with the survival of a person of the same age and sex who does not have cancer.
Scientists have reported adverse health effects of using mobile phones including changes in brain activity, reaction times, and sleep patterns. More studies are underway to try to confirm these findings. When mobile phones are used very close to some medical devices (including pacemakers, implantable defibrillators, and certain hearing aids) there is the possibility of causing interference with their operation. There is also the potential of interference between mobile phones signals and aircraft electronics. Some countries have licensed mobile phone use on aircraft during flight using systems that control the phone output power.
The Working Group indicated that, although the human studies were susceptible to bias, the findings could not be dismissed as reflecting bias alone, and that a causal interpretation could not be excluded. The Working Group noted that any interpretation of the evidence should also consider that the observed associations could reflect chance, bias, or confounding rather than an underlying causal effect. In addition, the Working Group stated that the investigation of risk of cancer of the brain associated with cell phone use poses complex methodologic challenges in the conduct of the research and in the analysis and interpretation of findings.
This is why it’s important to always use either your phone’s speakerphone or an appropriate wired earpiece whenever possible, avoiding direct contact between your phone and your ear or hand. The best earpieces are those equipped with hollow tubing between the antenna in the wire and the earpiece, as these help maximize the distance between the radiation-emitting antenna and your head.
The European Union is currently running the Mobi-Kids, a case-control study in 14 countries, to better understand the effects of electromagnetic fields radiation on children and adolescents. One of the early publications from the project, looking at data on the use of wireless devices among 10- to 25-year-olds in France, found that kids are started to rely on these devices earlier and earlier in life. But the researchers are still analyzing the main results on any health impacts, and haven’t yet published their findings.

Forced to take action, the cell phone industry set up a non-profit organization, Wireless Technology Research (WTR), to perform the study. Dr. Carlo developed the program outline and was asked to head the research. Oversight of the issue was charged to the FDA, though it could have and probably should have gone to the Environmental Protection Agency (EPA), which fought hard for jurisdiction. But the industry had enough influence in Washington to get whatever overseer it wanted. It simply didn’t want to tangle with EPA because, says Dr. Carlo, “… the EPA is tough.”
The guidelines, issued last week, note that “some laboratory experiments and human health studies have suggested the possibility that long-term, high use of cell phones may be linked to certain types of cancer and other health effects.” These include brain cancer, tumors of the acoustic nerve and salivary glands, lower sperm count, headaches and effects on learning, memory, hearing, behavior and sleep.
Cell-phone designs have changed a lot since the studies described above were completed. For example, the antennas—where most of the radiation from cell phones is emitted—are no longer located outside of phones near the top, closest to your brain when you talk, but are inside the phone, and they can be toward the bottom. As a result, the antenna may not be held against your head when you’re on the phone. That’s important because when it comes to cell-phone radiation, every milli­meter counts: The strength of exposure drops dramatically as the distance from your body increases.
All cell phones emit Electromagnetic Radiation (EMR). Most people are aware of Radio Frequency (RF) (also known as Microwave) signals that connect your cell phone to a cell tower, a WiFi router and Bluetooth devices. These cell phone signals are always on. But did you know that cell phones also emit Extremely Low Frequency (ELF) radiation produced by the cell phone’s internal components?
Some people might consider choosing a phone with a low SAR value. Different models of phones can give off different levels of RF waves. But as noted above, according to the FCC the SAR value is not always a good indicator of a person’s exposure to RF waves during normal cell phone use. One way to get information on the SAR level for a specific phone model is to visit the phone maker’s website. The FCC has links to some of these sites here: www.fcc.gov/encyclopedia/specific-absorption-rate-sar-cellular-telephones. If you know the FCC identification (ID) number for a phone model (which can often be found somewhere on the phone or in the user manual), you can also go to the following web address: www.fcc.gov/oet/ea/fccid. On this page, you will see instructions for entering the FCC ID number.
A decline in male sperm quality has been observed over several decades.[11][12][13] Studies on the impact of mobile radiation on male fertility are conflicting, and the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on the reproductive systems are currently under active debate.[14][15][16][17] A 2012 review concluded that "together, the results of these studies have shown that RF-EMR decreases sperm count and motility and increases oxidative stress".[18][19] A 2017 study of 153 men that attended an academic fertility clinic in Boston, Massachusetts found that self-reported mobile phone use was not related to semen quality, and that carrying a mobile phone in the pants pocket was not related to semen quality.[20]
Finally, Brawley reminded me that cellphones kill humans in another way that we’re already certain about: because of inattention through distracted driving. In the US alone, there were 3,157 fatal crashes in 2016 that involved distracted driving, 14 percent of which included cellphone use, according to the latest data from the National Highway Traffic Safety Administration. That’s not the focus of this piece, but perhaps state and federal regulators could follow places like Washington state, California, New York, and Nevada and heavily crack down on distracted driving with bans or stricter laws.
Several studies that will provide more information are under way. Researchers from the Centre for Research in Environmental Epidemiology in Spain are conducting another international case–control study—Mobi-Kids—that will include 2000 young people (aged 10–24 years) with newly diagnosed brain tumors and 4000 healthy young people. The goal of the study is to learn more about risk factors for childhood brain tumors.
Radiofrequency radiation is a form of electromagnetic radiation. Electromagnetic radiation can be categorized into two types: ionizing (e.g., x-rays, radon, and cosmic rays) and non-ionizing (e.g., radiofrequency and extremely low frequency, or power frequency). Electromagnetic radiation is defined according to its wavelength and frequency, which is the number of cycles of a wave that pass a reference point per second. Electromagnetic frequencies are described in units called hertz (Hz).
×