If you're looking for ways to limit your exposure to the electromagnetic emissions from your cell phone, know that, according to the FTC, there is no scientific proof that so-called shields significantly reduce exposure from these electromagnetic emissions. In fact, products that block only the earpiece – or another small portion of the phone – are totally ineffective because the entire phone emits electromagnetic waves. What's more, these shields may interfere with the phone's signal, cause it to draw even more power to communicate with the base station, and possibly emit more radiation.
The studies are notable for their sizes. Researchers at the National Toxicology Program, a federal interagency group under the National Institutes of Health, tested 3,000 rats and mice of both sexes for two years—the largest investigation of RF radiation and cancer in rodents ever undertaken in the U.S. European investigators at the Ramazzini Institute in Italy were similarly ambitious; in their recent study they investigated RF effects in nearly 2,500 rats from the fetal stage until death.
This 2009 meta-analysis, published in the Journal of Clinical Oncology, looked at 23 case-control studies of the risk of both malignant and benign tumors from mobile phone use. When the authors included all 23, they found no increased risk of tumors. When they crunched certain subsets of the data — like looking only at studies that were blinded, or people who used cellphones for 10 or more years — they did find increases in tumor risks. Confusingly, when they divided up the analysis by tumor type, they found no increase in risk for glioma and acoustic neuroma, and a decrease in risk of meningioma.
In 2015, the European Commission Scientific Committee on Emerging and Newly Identified Health Risks concluded that, overall, the epidemiologic studies on cell phone radiofrequency electromagnetic radiation exposure do not show an increased risk of brain tumors or of other cancers of the head and neck region (2). The Committee also stated that epidemiologic studies do not indicate increased risk for other malignant diseases, including childhood cancer (2).
Since speaking with Samet, further details came out from a large study that beamed high levels of phone radiation at rats and mice. While there remain quirks in the findings, the latest evidence still doesn’t find a link between phone radiation and cancer. In response, the FDA said, “Taken together, all of this research ... [has] given us the confidence that the current safety limits for cell phone radiation remain acceptable for protecting the public health.”
The electromagnetic spectrum is broken up into two parts based on whether small doses of that radiation can cause harm: ionizing radiation and non-ionizing radiation. Ionizing radiation—UV, x-rays, and gamma rays—has enough energy in one photon (quantized minimum packet of light) to remove electrons from atoms or break apart chemical bonds. It is because of this potential for cancer-causing DNA damage that you wear a lead vest when you get x-rays at the dentist and you are advised to wear sunblock when you go out in the sun. One can’t avoid natural (radon, cosmic rays when you are up in an airplane) and man made (diagnostic x-rays) sources of ionizing radiation completely, but it is reasonable advice to minimize exposure when possible.
In theory, men may be more vulnerable to cellphone radiation’s effects on fertility than women. Sperm cells are made and stored in testicles, whereas egg cells are stored in ovaries. And the location of these two organs means that sperm and eggs have different levels of protection from radiation. Testicles sit outside of the abdomen, which makes them more sensitive to radiation. And, well, a phone often sits in your front pocket.
Again, non-ionizing radiation — the radiation from cellphones — doesn’t have enough energy to break our DNA, and therefore, we have traditionally thought, it couldn’t cause cancer. But there is some question about whether it’s as harmless as was once believed, or whether there might be another mechanism at play, other than direct DNA damage, that could lead to cancer or other biological problems.
There was also “equivocal” evidence that it raised the risk of heart conditions, and led to evidence of DNA damage. Baby rats born to mothers during the trial had lower birth weights. The scientists also found a statistically significant increase in lymphoma (cancer of the lymph nodes) among female mice and heightened rates of liver cancer in the male mice. All those findings were labeled “equivocal.”
According to the WHO, the "precautionary principle" is "a risk management policy applied in circumstances with a high degree of scientific uncertainty, reflecting the need to take action for a potentially serious risk without awaiting the results of scientific research." Other less stringent recommended approaches are prudent avoidance principle and as low as reasonably practicable. Although all of these are problematic in application, due to the widespread use and economic importance of wireless telecommunication systems in modern civilization, there is an increased popularity of such measures in the general public, though also evidence that such approaches may increase concern.[35] They involve recommendations such as the minimization of cellphone usage, the limitation of use by at-risk population (such as children), the adoption of cellphones and microcells with as low as reasonably practicable levels of radiation, the wider use of hands-free and earphone technologies such as Bluetooth headsets, the adoption of maximal standards of exposure, RF field intensity and distance of base stations antennas from human habitations, and so forth.[citation needed] Overall, public information remains a challenge as various health consequences are evoked in the literature and by the media, putting populations under chronic exposure to potentially worrying information.[36]
Note: Although it is true that cell phones emit low frequency magnetic fields that can be measured in milliGauss, they also emit high frequency microwave radiation which is what all the concern (and publicity) is about, and which the products below are designed to shield. Many clients have contacted us seeking a shield for BOTH magnetic fields and microwaves for their phone. Such a shield does not currently exist. To reduce your exposure to BOTH types of radiation, use an airtube headset and keep the phone itself at a distance.
Since use of mobile phones by children began at a later stage compared to use by adults, the effects of exposure to mobile phones in this population have not yet been investigated. Considering their health sensitivity, the long life expectancy in the young population (probably involving the accumulation of significant exposure and development of morbidity in the long-run), and ethical issues involved in decision making regarding the population of minors, additional precaution is required in this population. Therefore, the Ministry of Health advises parents to reduce children’s exposure to mobile phones as much as possible, consider the age they start using them, reduce the amount of time mobile phones are used, and in any event, make sure they use earphones (not wireless) or a speaker when using the mobile phone.
In 2011, the International Agency for Research on Cancer (IARC), a component of the World Health Organization, appointed an expert Working Group to review all available evidence on the use of cell phones. The Working Group classified cell phone use as “possibly carcinogenic to humans,” based on limited evidence from human studies, limited evidence from studies of radiofrequency radiation and cancer in rodents, and inconsistent evidence from mechanistic studies (4).

Like we talked about in the last section, SAR limits that are reported are the maximum possible radiation emitted from the device, however, this level is not what is common with the regular use of the device. Just because one cell phone has a higher maximum SAR level, doesn’t mean that the radiation level of normal use isn’t higher or lower than another device with a different maximum SAR level.


The NTP studied radiofrequency radiation (2G and 3G frequencies) in rats and mice (33, 34). This large project was conducted in highly specialized labs that specified and controlled sources of radiation and measured their effects. The rodents experienced whole-body exposures of 3, 6, or 9 watts per kilogram of body weight for 5 or 7 days per week for 18 hours per day in cycles of 10 minutes on, 10 minutes off. A research overview of the rodent studies, with links to the peer-review summary, is available on NTP website. The primary outcomes observed were a small number of cancers of Schwann cells in the heart and non-cancerous changes (hyperplasia) in the same tissues for male rats, but not female rats, nor in mice overall.
This 2017 review, published in Neurological Sciences, looked at case-control studies on cellphone use, focusing on glioma, meningioma, and acoustic neuromas. This review was interesting because the researchers divided the studies by quality, and higher-quality studies — which tended to be funded by the government and not the cellphone industry — showed a trend toward an increased risk of brain tumors, while lower-quality studies did not. Overall, though, their meta-analysis found an increased risk of brain cancers (mostly gliomas) among people who were using cellphones for 10 or more years, and no increase in the risk of acoustic neuroma.
While the Federal Communication Commission limits how much radiofrequency radiation can come out of your cellphone, the Food and Drug Administration can have a say about whether those limits are safe. So the FDA asked the National Toxicology Program (NTP), a division within the National Institutes of Health, to investigate. Based on the NTP’s results, as well as hundreds of other studies, the FDA is still confident that the current limits on cellphone radiation are safe, according to a statement from Jeffrey Shuren, the director of the FDA’s Center for Devices and Radiological Health.
More often power off your phone or set it to airplane mode with Wi-Fi OFF and Bluetooth OFF. Even in standby mode, your phone emits RF energy because it is constantly searching for service or new messages. If you do not need your cell phone, simply power it off. This also applies to all other wireless devices whereby the Wi-Fi antennas can be powered off. Wi-Fi enabled laptops, tablets and other wireless devices (such as gaming devices) are always transmitting even if you are not using them, so remember to power them off.
But according to the FCC, comparing SAR values between phones can be misleading. The listed SAR value is based only on the phone operating at its highest power, not on what users would typically be exposed to with normal phone use. The actual SAR value during use varies based on a number of factors, so it’s possible that a phone with a lower listed SAR value might actually expose a person to more RF energy than one with a higher listed SAR value in some cases.
Experts consulted by France considered it was mandatory that the main antenna axis should not to be directly in front of a living place at a distance shorter than 100 metres.[22] This recommendation was modified in 2003[23] to say that antennas located within a 100-metre radius of primary schools or childcare facilities should be better integrated into the cityscape and was not included in a 2005 expert report.[24] The Agence française de sécurité sanitaire environnementale (fr) as of 2009, says that there is no demonstrated short-term effect of electromagnetic fields on health, but that there are open questions for long-term effects, and that it is easy to reduce exposure via technological improvements.[25]
Today there are more than two billion cell phone users being exposed every day to the dangers of electromagnetic radiation (EMR)—dangers government regulators and the cell phone industry refuse to admit exist. Included are: genetic damage, brain dysfunction, brain tumors, and other conditions such as sleep disorders and headaches.1-9 The amount of time spent on the phone is irrelevant, according to Dr. Carlo, as the danger mechanism is triggered within seconds. Researchers say if there is a safe level of exposure to EMR, it’s so low that we can’t detect it.
The dangers of driving and texting are old news; if someone were to be harmed by their cellphone’s radiation, though, that would make headlines because novelty grabs people’s attention. In psychological experiments where people have to choose images, they gravitate towards ones they haven’t seen before — a phenomenon known as the novelty bonus. So if I wanted to grab a reader’s attention, I’d bet on a hypothetical headline that said “For the first time, cellphone radiation causes brain cancer in humans” over “Another person has died today from driving and texting.”
The study specifically used 2G and 3G frequencies — not the frequencies used on more advanced 4G or 5G networks. Researchers exposed the rodents’ entire bodies to the radiowaves for more than nine hours per day, for up to two years. (“A rat that is 2 years old is roughly equivalent to a 70-year-old person,” STAT News reports.) These exposure levels were much higher than what people would experience, John Bucher, senior scientist with the NTP, says in a statement. “So, these findings should not be directly extrapolated to human cell phone usage,” he says.
First, studies have not yet been able to follow people for very long periods of time. When tumors form after a known cancer-causing exposure, it often takes decades for them to develop. Because cell phones have been in widespread use for only about 20 years in most countries, it is not possible to rule out future health effects that have not yet appeared.
Searching PubMed for studies published in the past 10 years, we found 102 studies that ultimately resulted in 12 relevant systematic reviews. To limit bias in our assessment of the literature, we used a validated critical appraisal tool called AMSTAR to determine the quality of each review. Eight of the reviews were critically low quality, two were low quality, and two were moderate quality.
That brings us back to the main question here: Do cellphones cause tumors? We chose to focus this story on cancer risk, since it seems like the most common health concern people have about cellphones. But before we get to the answers, we need to take another (brief) detour to explain how this science has been done with human subjects. To do that, we need to zoom in on a nerdy subject: research methods.
I'm glad I spent the money to get this protection. Again, I consider this an "insurance policy" and hope cell phone radiation is over hyped. However, mounting evidence seems to indicate otherwise, so I feel more comfortable knowing I'm taking proactive steps to protect against a possible health problem I and my family might face in the future from long and close exposure to cell phones close to the body and head.

Thus far, the data from studies in children with cancer do not support this theory. The first published analysis came from a large case–control study called CEFALO, which was conducted in Denmark, Sweden, Norway, and Switzerland. The study included children who were diagnosed with brain tumors between 2004 and 2008, when their ages ranged from 7 to 19 years. Researchers did not find an association between cell phone use and brain tumor risk either by time since initiation of use, amount of use, or by the location of the tumor (21).


Perhaps more importantly, what types of radiation are causing, or likely to cause, or are suspected of causing, harm to humans? Is it the “harmonics” from the transmitter? Is it the RF from the circuitry? Is it the primary frequency on which the cell phone operates? This is important to understand. If the problem is the primary frequency on which the cell phone operates then forget the case and ditch the cell phone.
Because of inconsistent findings from epidemiologic studies in humans and the lack of clear data from previous experimental studies in animals, in 1999 the Food and Drug Administration nominated radiofrequency radiation exposure associated with cell phone exposures for study in animal models by the U.S. National Toxicology Program (NTP), an interagency program that coordinates toxicology research and testing across the U.S. Department of Health and Human Services and is headquartered at the National Institute of Environmental Health Sciences, part of NIH.
×