That mystery probably stokes fears about cellphone radiation instead of soothing them, though — in part because of how we in the media cover the rare and frightening. We’ve seen the same thing with fear over nuclear power plants, according to a paper published in Science in the 1980s by psychologist Paul Slovic. “Because nuclear risks are perceived as unknown and potentially catastrophic, even small accidents will be highly publicized and may produce large ripple effects,” Slovic wrote.
There is a degree of controversy surrounding the implications of cell phone radiation, and what it means to our health. Some research has suggested that the type of radio frequencies used by cell phones can speed up the progression of cancer in laboratory test animals, but it has proven difficult to replicate these results. It is known that radiation from cell phones can affect pacemakers, but the main concern is related to the fact that most cell phone users hold the phone against their ear. If significant levels of radiation enter the tissues of the head in this way over time, some worry that this can increase the likelihood of brain tumors and related conditions.
This is the second Cell Shield protector I have purchased. I have had one for my cell phone for almost a year now and it has been wonderful! When my husband upgraded to a new phone, I knew I needed to purchase one for him. The application of the button is very simple and it stays on well. Due to the fact that it is a 'raised' button (a few millimeters thick), some may find it difficult to know where to apply it. I have an i4 phone with an Otterbox case. There is a round cut-out hole in the case that lines up with the 'apple' symbol on the back of the phone. I was able to place the button in that cut-out and it lines up flush with the cover. I highly recommend this Protector to anyone looking to significantly and effectively block EMF's.

Limited to rats only, the Ramazzini study tested three doses expressed as the amount of radiation striking the animal’s bodies: either 5, 25 or 50 volts per meter. The exposure measures therefore differed from the absorbed doses calculated during the NTP study. But the Ramazzini scientists also converted their measures to W/kg, to show how the doses compared with RF limits for cell phones and cell towers set by the FCC and the International Commission on Non-Ionizing Radiation Protection; they ranged down to a 1,000 times lower. The exposures began when the rats were fetuses and continued for 19 hours a day until the animals died from natural causes.

The Specific Absorption Rate test uses sophisticated instruments to measure the amount of radiation absorbed into the body, usually the head. At present, the generally recognized limit for absorbed electromagnetic energy is 1.6 watts per kilogram. All cell phones sold must be tested and have their compliance with this standard certified by their manufacturer. The electromagnetic fields from a cell phone depend upon the design of the cell phone and its antenna,how it operates, as well as how it is held and used. Tests conducted by the ABC show 20/20 has found that some of the country’s most popular cell phones can – depending on how they’re held – exceed the radiation limit. A cell phone’s antenna radiates in all directions. The health concern is about the radiation actually absorbed into the head, which is where cell phones are usually held. SAR tests conducted on the SAR Shield show that the product reduces SAR radiation by as much as 89%.


But, dear reader, don’t think we’ve reached a “case closed” moment: Unfortunately, even the best evidence on cellphones and brain tumors is far from ideal. Remember, these cohort studies are still observational research — not experimental studies like RCTs. That means they can’t tell us about causation, and there are still many ways they could be biased.
A series of studies testing different scenarios (called simulations by the study authors) were carried out using incidence data from the Nordic countries to determine the likelihood of detecting various levels of risk as reported in studies of cell phone use and brain tumors between 1979 and 2008. The results were compatible with no increased risks from cell phones, as reported by most epidemiologic studies. The findings did suggest that the increase reported among the subset of heaviest regular users in the Interphone study could not be ruled out but was unlikely. The highly increased risks reported in the Swedish pooled analysis were strongly inconsistent with the observed glioma rates in the Nordic countries (24).
Though some findings were reassuring, others do raise concerns. Specifically, three of the studies—one from Sweden, another from France, and a third that combined data from 13 countries—suggest a connection between heavy cell-phone use and gliomas, tumors that are usually cancerous and often deadly. One of those studies also hinted at a link between cell phones and acoustic neuromas (noncancerous tumors), and two studies hinted at meningiomas, a relatively common but usually not deadly brain tumor.
Like we talked about in the last section, SAR limits that are reported are the maximum possible radiation emitted from the device, however, this level is not what is common with the regular use of the device. Just because one cell phone has a higher maximum SAR level, doesn’t mean that the radiation level of normal use isn’t higher or lower than another device with a different maximum SAR level.
But the results of these two rat studies align with those of the biggest cell phone-radiation human study to date, INTERPHONE. The INTERPHONE study, published in 2011, was a coordinated effort by researchers at 16 institutions across 13 countries, and found that the heaviest mobile phone users were more likely to develop glioma—the same type of brain cancer the NTP study found in the male rats. “So there’s a concordance between the animal and human data,” Melnick says.
The guidelines, issued last week, note that “some laboratory experiments and human health studies have suggested the possibility that long-term, high use of cell phones may be linked to certain types of cancer and other health effects.” These include brain cancer, tumors of the acoustic nerve and salivary glands, lower sperm count, headaches and effects on learning, memory, hearing, behavior and sleep.

In March, however, a peer-review panel of 11 experts from industry and academia voted to advise the agency that it should raise the confidence level from “equivocal evidence” to “some evidence” of a link between cellphone radiation and brain tumors in male rats. (The female rats did not show evidence of a link between the radiation and such tumors.) Two panel members, Lydia Andrews-Jones of Allergan and Susan Felter of Procter & Gamble, proposed the risk upgrade.
Jump up ^ "Téléphones mobiles : santé et sécurité" (in French). Le ministère de la santé, de la jeunesse et des sports. 2 January 2008. Retrieved 19 January 2008. Lay article in (in English) making comment at Gitlin, Jonathan M. (3 January 2008). "France: Beware excessive cell phone use?: despite lack of data". Ars Technica. Retrieved 19 January 2008.
“I think the overall evidence that wireless radiation might cause adverse health effects is now strong enough that it’s almost unjustifiable for government agencies and scientists not to be alerting the public to the potential hazards,” says David O. Carpenter, M.D., director of the Institute for Health and the Environment at the University at Albany in New York and one of the authors of the recent letter to the U.N. and WHO.
The energy of electromagnetic radiation is determined by its frequency; ionizing radiation is high frequency, and therefore high energy, whereas non-ionizing radiation is low frequency, and therefore low energy. The NCI fact sheet Electromagnetic Fields and Cancer lists sources of radiofrequency radiation. More information about ionizing radiation can be found on the Radiation page.
×