Third, most of the studies published so far have focused on adults, rather than children. (One case-control study looking at children and teens did not find a significant link to brain tumors, but the small size of the study limited its power to detect modest risks.) Cell phone use is now widespread even among younger children. It is possible that if there are health effects, they might be more pronounced in children because their bodies might be more sensitive to RF energy. Another concern is that children’s lifetime exposure to the energy from cell phones will be greater than adults’, who started using them at a later age.
In conclusion: It is still unclear whether use of cellular technology is associated with an increased risk to develop malignant and benign tumors, but taking into account the results of recent studies, the Ministry of Health adopts the precautionary principle and follows the recommendations listed in the “Ministry of Health Recommendations” (below).

Pong’s claims for its case have stood up to the scrutiny of Wired magazine and the Better Business Bureau (Advertising Self-Regulation Council 2012; Ganapati 2009). In tests conducted by Cetecom, a cell phone radiation certification lab, and observed by a reporter from Wired magazine, an iPhone 3G tested without a case had a maximum SAR of 1.18 W/kg when held at the ear. The same phone tested with a Pong case had a maximum SAR of 0.42 W/kg (Ganapati 2009).  
Since 2001, the FCC has allowed manufacturers to test phones at a distance of up to one inch from the body to account for the use of a holster. In a 2012 report, however, the Government Accountability Office, the Congressional watchdog agency, noted that many cell phone owners actually keep and use their phones right next to the body, so these outdated testing policies could result in radiofrequency (RF) radiation exposure greater than the FCC’s legal limit (GAO 2012). The GAO report concluded:
Since use of mobile phones by children began at a later stage compared to use by adults, the effects of exposure to mobile phones in this population have not yet been investigated. Considering their health sensitivity, the long life expectancy in the young population (probably involving the accumulation of significant exposure and development of morbidity in the long-run), and ethical issues involved in decision making regarding the population of minors, additional precaution is required in this population. Therefore, the Ministry of Health advises parents to reduce children’s exposure to mobile phones as much as possible, consider the age they start using them, reduce the amount of time mobile phones are used, and in any event, make sure they use earphones (not wireless) or a speaker when using the mobile phone.
These experimental findings raise new questions as to the potential for radiofrequency radiation to result in cellular changes and offer potential avenues for further laboratory studies. Cancers in the heart are extremely rare in humans, where the primary outcomes of potential concern with respect to radiofrequency radiation exposure from cell phones are tumors in the brain and central nervous system. Schwann cells of the heart in rodents are similar to the kind of cells in humans that give rise to acoustic neuromas (also known as vestibular schwannomas), which some studies have suggested are increased in people who reported the heaviest use of cell phones. The NTP has stated that they will continue to study this exposure in animal models to further advance our understanding of the biological underpinnings of the effects reported above.
Radiofrequency radiation is a form of electromagnetic radiation. Electromagnetic radiation can be categorized into two types: ionizing (e.g., x-rays, radon, and cosmic rays) and non-ionizing (e.g., radiofrequency and extremely low frequency, or power frequency). Electromagnetic radiation is defined according to its wavelength and frequency, which is the number of cycles of a wave that pass a reference point per second. Electromagnetic frequencies are described in units called hertz (Hz).
×