It’s also possible that longer-term studies and cancer incidence tracking will find larger cancer effects in another five or 10 years — or that how we use cellphones is evolving such that the devices may cause cancer in ways these studies didn’t account for. (These days, many people text instead of talking, and hold their cellphones in their pockets but not on their heads and necks.) That’s why some people look to animal studies to supplement our understanding of the potential biological effects of cellphones.

Also noteworthy is that the studies evaluated radiation exposures in different ways. The NTP looked at “near-field” exposures, which approximate how people are dosed while using cell phones. Ramazzini researchers looked at “far-field” exposures, which approximate the wireless RF radiation that bombards us from sources all around us, including wireless devices such as tablet and laptop computers. Yet they generated comparable results: Male rats in both studies (but not mice or female animals) developed schwannomas of the heart at statistically higher rates than control animals that were not exposed.
The studies are notable for their sizes. Researchers at the National Toxicology Program, a federal interagency group under the National Institutes of Health, tested 3,000 rats and mice of both sexes for two years—the largest investigation of RF radiation and cancer in rodents ever undertaken in the U.S. European investigators at the Ramazzini Institute in Italy were similarly ambitious; in their recent study they investigated RF effects in nearly 2,500 rats from the fetal stage until death.
The bulk of scientific evidence says that cellphone radiation doesn’t harm humans, according to the Food and Drug Administration: our cellphones are much more likely to kill us when we glance down at them while driving. But people are bad at judging risk. And the word “radiation” combined with the fact that we can’t see or control the invisible forces emanating from our cellphones becomes a perfect recipe for fear.
In order to protect the population living around base stations and users of mobile handsets, governments and regulatory bodies adopt safety standards, which translate to limits on exposure levels below a certain value. There are many proposed national and international standards, but that of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) is the most respected one, and has been adopted so far by more than 80 countries. For radio stations, ICNIRP proposes two safety levels: one for occupational exposure, another one for the general population. Currently there are efforts underway to harmonise the different standards in existence.[26]
The government, however, does not require phone manufacturers to consider the effect of cases when they conduct compliance tests to meet the FCC’s allowable radiation exposure limits. The significance of this omission was underscored by tests commissioned by case-maker Pong Research and submitted to the FCC in May 2012. Those tests showed that three models of cases made by competing companies and used with an iPhone4 increased the phones’ Specific Absorption Rate, or SAR – the amount of radiation absorbed by the user’s body – by 20-to-70 percent (Table 1).
Regular battery-powered watches (and all other battery-powered tech, for that matter) also produce some level of EMFs, but that level is far lower than the amount emitted by tech devices that are plugged in, or that receive and transmit information wirelessly. The same rule applies however; if you can turn it off and keep it away from your body, then do so whenever possible.
We’re also exposed to radio-frequency radiation from the networks that connect our phones. And while the coming rollout of 5G, or fifth-generation, wireless networks is expected to transmit data faster than ever, it will also increase the number of antennas sending signals to mobile devices, and potentially our exposure to radiation, with unclear health effects.
The FCC provides information about the specific absorption rate (SAR) of cell phones produced and marketed within the last 1 to 2 years. The SAR corresponds with the relative amount of radiofrequency radiation absorbed by the head of a cell phone user (47). Consumers can access this information using the phone’s FCC ID number, which is usually located on the case of the phone, and the FCC’s ID search form.
But manipulation by the industry had begun almost immediately at the start of research. While Dr. Carlo and his team had never defined their research as being done to prove the safety of cell phones, the industry internally defined it as an insurance policy to prove that phones were safe. From the outset, what was being said by the cell phone industry in public was different from what was being said by the scientists behind closed doors.

There’s no question that portable phones and computers offer many conveniences and have made our lives easier in countless ways. For many people this convenience outweighs the worry of EMFs. My hope is that by becoming aware of the sources and dangers of cell phone radiation and EMFs, you’ll take steps to minimize exposure for both you and your family.


The frequency of radiofrequency electromagnetic radiation ranges from 30 kilohertz (30 kHz, or 30,000 Hz) to 300 gigahertz (300 GHz, or 300 billion Hz). Electromagnetic fields in the radiofrequency range are used for telecommunications applications, including cell phones, televisions, and radio transmissions. The human body absorbs energy from devices that emit radiofrequency electromagnetic radiation. The dose of the absorbed energy is estimated using a measure called the specific absorption rate (SAR), which is expressed in watts per kilogram of body weight.
×