Recall bias, which can occur when data about prior habits and exposures are collected from study participants using questionnaires administered after diagnosis of a disease in some of the participants. It is possible that study participants who have brain tumors may remember their cell phone use differently from individuals without brain tumors. Many epidemiologic studies of cell phone use and brain cancer risk lack verifiable data about the total amount of cell phone use over time. In addition, people who develop a brain tumor may have a tendency to recall cell phone use mostly on the same side of the head where their tumor was found, regardless of whether they actually used their phone on that side of the head a lot or only a little.
You’ll notice radiation is split into two categories here: ionizing and non-ionizing. The waves emitted from radios, cellphones and cellphone towers, Wi-Fi routers, and microwaves are referred to as “radio-frequency” radiation. That’s a type of “non-ionizing” radiation, since it doesn’t carry enough energy to “ionize” — or strip electrons from atoms and molecules. (Other sources of non-ionizing radiation, as you can see in our chart, include visible and infrared light.)
While an increased risk of brain tumours from the use of mobile phones is not established, the increasing use of mobile phones and the lack of data for mobile phone use over time periods longer than 15 years warrant further research of mobile phone use and brain cancer risk. In particular, with the recent popularity of mobile phone use among younger people, potentially longer lifetime of exposure, WHO has promoted further research on this group and is currently assessing the health impact of RF fields on all studied endpoints. A cohort study in Denmark linked billing information from more than 358,000 cell phone subscribers with brain tumour incidence data from the Danish Cancer Registry. The analyses found no association between cell phone use and the incidence of glioma, meningioma, or acoustic neuroma, even among people who had been cell phone subscribers for 13 or more years. (4)

Again, non-ionizing radiation — the radiation from cellphones — doesn’t have enough energy to break our DNA, and therefore, we have traditionally thought, it couldn’t cause cancer. But there is some question about whether it’s as harmless as was once believed, or whether there might be another mechanism at play, other than direct DNA damage, that could lead to cancer or other biological problems.
“I think the overall evidence that wireless radiation might cause adverse health effects is now strong enough that it’s almost unjustifiable for government agencies and scientists not to be alerting the public to the potential hazards,” says David O. Carpenter, M.D., director of the Institute for Health and the Environment at the University at Albany in New York and one of the authors of the recent letter to the U.N. and WHO.
Generally speaking, the near-field refers to the RF field close to the antenna and the far-field is the RF field further away from the antenna. Often times when you use your cell phone, your body is often located in the near-field (one wavelength or less) of the cell phone antenna. It is especially concerning when you hold your phone next to your head or wear it on your body as you can be exposed to very intense near-field radiation from the phone.
Just as inevitably, worries about brain cancer spawned a market for products that supposedly protect cell phone users. For $62, you can order a Delta Shield, a thin polyester patch that contains a microchip that allegedly renders cell phones harmless. Users are instructed to place the patch on their cell phone battery. The similar BIOPRO Cell Chip, sold online for $35, attaches to the outside of the phone. The penny-size WaveShield 2000 Gold, selling for about $25, fits on the earpiece.
Since speaking with Samet, further details came out from a large study that beamed high levels of phone radiation at rats and mice. While there remain quirks in the findings, the latest evidence still doesn’t find a link between phone radiation and cancer. In response, the FDA said, “Taken together, all of this research ... [has] given us the confidence that the current safety limits for cell phone radiation remain acceptable for protecting the public health.”
Forced to take action, the cell phone industry set up a non-profit organization, Wireless Technology Research (WTR), to perform the study. Dr. Carlo developed the program outline and was asked to head the research. Oversight of the issue was charged to the FDA, though it could have and probably should have gone to the Environmental Protection Agency (EPA), which fought hard for jurisdiction. But the industry had enough influence in Washington to get whatever overseer it wanted. It simply didn’t want to tangle with EPA because, says Dr. Carlo, “… the EPA is tough.”
The authors of these studies noted that the results were preliminary and that possible health outcomes from changes in glucose metabolism in humans were unknown. Such inconsistent findings are not uncommon in experimental studies of the biological effects of radiofrequency electromagnetic radiation in people (4). Some factors that can contribute to inconsistencies across such studies include assumptions used to estimate doses, failure to consider temperature effects, and lack of blinding of investigators to exposure status.
Lab studies: Lab studies usually expose animals to something like RF energy to see if it causes tumors or other health problems. Researchers might also expose normal cells in a lab dish to RF energy to see if it causes the types of changes that are seen in cancer cells. It’s not always clear if the results from these types of studies will apply to humans, but lab studies allow researchers to carefully control for other factors that might affect the results and to answer some basic science questions.
I noticed the Blocsock hardly added any bulk to my phone, and fit comfortably in my pocket. I have a Rocketfish RF-MTVT2SP protective gel case and thankfully the phone fits the Blocsock without having to take off this case. The Blocsock is very easy to use, and is quick and easy to take out and answer the phone. Again, if you get one, make sure the size you order is right and not too tight or loose. The pouch on the Blocsock is handy when using the phone to call people so the phone can be placed in the pouch between the Blocsock and me, protecting my head from radiation while still enabling people to clearly hear me and vice versa.

Many respected scientists join them. “We found no evidence of an increased risk of brain tumors or any other form of cancer” from cell-phone radiation, says John Boice Jr., Sc.D., president of the National Council on Radiation Protection & Measurements and a professor of medicine at the Vanderbilt University School of Medicine in Nashville, Tenn. “The worry should instead be in talking or texting with your cell phone while driving.”
To check for radiowave emissions, use an RF meter with Near Field antenna. Again, position the antenna loop on the phone (because the entire antenna stem has some sensitivity, it is best to position the entire antenna over the area that will be shielded). Note carefully where the loop is positioned. Make a call and watch the readings. Notice the highest and lowest readings, and make a mental note of the "average" reading. Now, insert the shield, and repeat.

In order to protect the population living around base stations and users of mobile handsets, governments and regulatory bodies adopt safety standards, which translate to limits on exposure levels below a certain value. There are many proposed national and international standards, but that of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) is the most respected one, and has been adopted so far by more than 80 countries. For radio stations, ICNIRP proposes two safety levels: one for occupational exposure, another one for the general population. Currently there are efforts underway to harmonise the different standards in existence.[26]

Manufacturers conduct government-required certification tests using a bare phone, set to transmit at maximum power, with no accessories. The recorded maximum SAR is reported to the FCC and listed in the phone’s manual. A phone tested with accessories under the same conditions can produce a higher SAR because the materials surrounding the antenna can affect the amount of radiation that reaches and is absorbed by the user’s body. A case can influence both the overall amount of emitted radiation and how it is directed.

SafeSleeve was founded in California by two Engineering graduates (University of Cal Poly San Luis Obispo) Cary and Alaey, with a desire to make a difference. They wanted to develop a product to help simplify, protect, and enhance the lives of their increasingly busy, tech dependent peers, family and friends. This is apparent in the highly efficient and useful, yet stylish designs and branding of SafeSleeve products. 
In 2011, two small studies were published that examined brain glucose metabolism in people after they had used cell phones. The results were inconsistent; whereas one study showed increased glucose metabolism in the region of the brain close to the antenna compared with tissues on the opposite side of the brain (26), the other study (27) found reduced glucose metabolism on the side of the brain where the phone was used.
×