“We see either no change or very small increases in incidence in some tumor types,” Quinn Ostrom, the Baylor College of Medicine researcher who has been analyzing these cancer trends, explained. “I would be inclined to say this isn’t as much of an increase as you might expect if cellphones were causative [of brain tumors] due to the very sharp way use of these devices has gone up over the last 20 years.”
Just take a moment and think about how much you’re using your phone every single day. Answering calls, discussing plans, talking about your day with friends, playing games, watching videos and using apps, only scratch the surface of how much you’re actually using your phone. You might even have it by your bedside or on your nightstand when you go to bed at night. It’s time you stopped exposing yourself to dangerous EMF radiation and protected yourself from the dire consequences of using an unshielded smartphone or tablet.

When we think of harmful radiation, things like X-rays or gamma rays usually come to mind, but these types of radiation are different from mobile phone radiation in important ways. Radiation on the ultraviolet side of visible light, like those types just mentioned, has a wavelength that is short enough to alter some of the chemical properties of the objects it interacts with. It is referred to as ionizing radiation, for this reason. Non-ionizing radiation, which includes visible light, microwaves and radio waves, is typically regarded as harmless. Large amounts of it can produce a heating effect, like in a microwave oven, but no short-term damage has been linked to exposure to non-ionizing radiation.
Today’s report, the final one, was about a decade in the making and is the last of several versions that have been released since preliminary results were presented in May 2016. It represents the consensus of NTP scientists and a group of external reviewers, according to the release. In the future, the NTP plans to conduct studies in smaller exposure chambers and to use biomarkers such as DNA damage to gauge cancer risk. These changes in the experimental setup should mean that future studies will take less time.
People can also reduce their exposure by limiting cell-phone use when the cellular signal is weak; when traveling in a high-speed car, bus or train; to stream audio or video; or to download or upload large files. All of these circumstances cause phones to put out higher-than-normal levels of RF energy. Phones also emit RF energy when connected to WiFi or Bluetooth devices, but at lower levels.
Apple has designed the 3D touch screens on newer models of the iPhone such as iPhone 6S, iPhone 6S Plus, iPhone 7 and iPhone 7 Plus models to have adjustable screen sensitivity. If your phone is acting unexpectedly when closing the cover of your case, this can be easily solved by adjusting the sensitivity of the touchscreen in your phone settings. Go to Settings > General > Accessibility > 3D Touch. You can either turn this feature completely OFF or set the sensitivity slider to FIRM to make the the 3D touch screen less sensitive.

Independently tested DefenderShield® technology uses a patent-pending sophisticated layering of separate non-toxic, human safe exotic materials processed for maximum radiation blocking efficiency. Each material has unique and targeted radiation shielding characteristics designed to work in unison to up to eliminate all radiation emissions from 0 to 10 GHz.
So, what do these results in rodents mean for people? Not a whole lot, experts say. “Even with frequent daily use by the vast majority of adults, we have not seen an increase in events like brain tumors,” the FDA’s statement says. Otis Brawley, the American Cancer Society’s chief medical officer, agreed in an interview with The Associated Press. “The evidence for an association between cellphones and cancer is weak, and so far, we have not seen a higher cancer risk in people,” Brawley told the AP in a phone interview. “I am actually holding my cellphone up to my ear.”

Most of these early studies did not find an increase in the risk for developing tumors among mobile phone users. The main problem characterizing these studies stems from the fact that the development of cancer (in particular brain tumors) takes a very long time (at least 10-20 years and up to 40 years or more), while mobile phone technology is relatively new (as aforesaid, popular use began only in the mid-90s). Hence, these studies could not demonstrate risk even if such existed.

EWG believes that cell phone testing procedures should include cases and other accessories, whether supplied by the phone manufacturer or a third party. Since these cases and accessories have no other use and have the potential to influence the phone’s transmitting and receiving activity and the amount of radiation that a user might encounter, they fall within FCC’s authority.

If you want to use your phone for talking, then the idea is that you keep it flipped over the front of the screen – that way you’re blocking radiation on both the front and back. The speaker still works with the cover on, because there’s a small hole for that. The inevitable drawback of this is that you have to flip the cover open in order to access your keypad.

Let’s be honest, we’re addicted to our smartphones. According to an ABC news report, the average person checks their phone 150 times per day, not to mention the other 15 hours per day it sits in your pocket. It’s also nothing new that cell phones emit Electromagnetic Fields/Radiation (EMF/EMR) when it’s glued to the side of our head more than 22 times per day. 
So of course now that we understand that the cases are not tested and just the material--it makes sense! We measured power density levels all around the case-the shielding material most likely isn't used "all over" because then the phone couldn't receive signal and wouldn't be able to engage in a call.  That's why we did not see even close to a 99% reduction when some cases were on the phone.  In fact, watch the video and you'll see some readings are more than 20% higher with a case on vs the naked phone.
Radiofrequency radiation is a form of electromagnetic radiation. Electromagnetic radiation can be categorized into two types: ionizing (e.g., x-rays, radon, and cosmic rays) and non-ionizing (e.g., radiofrequency and extremely low frequency, or power frequency). Electromagnetic radiation is defined according to its wavelength and frequency, which is the number of cycles of a wave that pass a reference point per second. Electromagnetic frequencies are described in units called hertz (Hz).
×