Overall, the reviews of case-control studies seem to suggest there is perhaps no risk of cancer with cellphone use — unless you look at some subgroups (like people in blinded studies or people with long-term exposures). But these reviews are based on case-control studies — which are like the National Enquirer of the science world: cheap and often misleading.
Use the speaker mode on the phone or a hands-free device such as a corded or cordless earpiece. This moves the antenna away from your head, which decreases the amount of RF waves that reach the head. Corded earpieces emit virtually no RF waves (although the phone itself still emits small amounts of RF waves that can reach parts of the body if close enough, such as on the waist or in a pocket). Bluetooth® earpieces have an SAR value of around 0.001 watts/kg (less than one thousandth the SAR limit for cell phones as set by the FDA and FCC).

The first one is easy, cellular frequencies vary between 450–2000MHz, but 800 or 900 MHz is the most common. The power emitted by a cell phone varies over the course of the call (higher when making initial contact, which lasts a few seconds). It can go up to 2 Watts at the start of a call, and can go down to .02 Watts during optimal operation [2]. Of course, most people barely use cell phones for calls, but I am using this example as a worst case scenario, because the phone is not right by your head when you are browsing Tinder.


The authors of these studies noted that the results were preliminary and that possible health outcomes from changes in glucose metabolism in humans were unknown. Such inconsistent findings are not uncommon in experimental studies of the biological effects of radiofrequency electromagnetic radiation in people (4). Some factors that can contribute to inconsistencies across such studies include assumptions used to estimate doses, failure to consider temperature effects, and lack of blinding of investigators to exposure status.

Have you ever had headaches, eye problems, insomnia or dizziness because of too much time spent with your electronics? If so, you have probably been exposed to excessive Electromagnetic Radiation emitted from electronic devices such as cell phones and computers. Look after your wellbeing by using the Kyutec Radiation Blocker to wipe out negative waves by 97.17%. Take back control of your daily functional routine today!
You’ll notice radiation is split into two categories here: ionizing and non-ionizing. The waves emitted from radios, cellphones and cellphone towers, Wi-Fi routers, and microwaves are referred to as “radio-frequency” radiation. That’s a type of “non-ionizing” radiation, since it doesn’t carry enough energy to “ionize” — or strip electrons from atoms and molecules. (Other sources of non-ionizing radiation, as you can see in our chart, include visible and infrared light.)

“If you’re looking for ways to limit your exposure to the electromagnetic emissions from your cell phone, know that, according to the FTC, there is no scientific proof that so-called shields significantly reduce exposure from these electromagnetic emissions. In fact, products that block only the earpiece – or another small portion of the phone – are totally ineffective because the entire phone emits electromagnetic waves. What’s more, these shields may interfere with the phone’s signal, cause it to draw even more power to communicate with the base station, and possibly emit more radiation.”
Just take a moment and think about how much you’re using your phone every single day. Answering calls, discussing plans, talking about your day with friends, playing games, watching videos and using apps, only scratch the surface of how much you’re actually using your phone. You might even have it by your bedside or on your nightstand when you go to bed at night. It’s time you stopped exposing yourself to dangerous EMF radiation and protected yourself from the dire consequences of using an unshielded smartphone or tablet.
Participation bias, which can happen when people who are diagnosed with brain tumors are more likely than healthy people (known as controls) to enroll in a research study. Also, controls who did not or rarely used cell phones were less likely to participate in the Interphone study than controls who used cell phones regularly. For example, the Interphone study reported participation rates of 78% for meningioma patients (range among the individual studies 56–92%), 64% for glioma patients (range 36–92%), and 53% for control subjects (range 42–74%) (6).
A study by the Corporate EME Research Laboratory and Motorola Florida Research Laboratories tested 9 different cell phone radiation shields, 5 of which claimed to block 99% of cell phone radiation. The other 4 shields tested claimed to emit a reverse radiation that would cancel out the harmful radiation from cell phones. The study found that all of the radiation shields had no effect on the amount of radiofrequency radiation a cell phone user is exposed to from their phone.[2]
If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Cell Phones and Cancer Risk was originally published by the National Cancer Institute.”
In 1993, the cell phone industry was pressured by Congress to invest $28 million into studying cell phone safety. The cause of this sudden concern was massive publicity about a lawsuit filed by Florida businessman David Reynard against cell phone manufacturer NEC. Reynard’s wife, Susan, died of a brain tumor, and he blamed cell phones for her death. Reynard revealed the suit to the public on the Larry King Live show, complete with dramatic x-rays showing the tumor close to where Susan held her cell phone to her head for hours each day.
Instead, we have to rely on “observational” data, tracking people’s real-world cellphone use and their disease incidence. Studies using observational data tend to be weaker, messier, and less clear-cut than experimental studies like RCTs. They can only tell us about associations between phenomena, not whether one thing caused another to happen. So that opens up a lot of the ambiguity we’re going to delve into next.
We’re also exposed to radio-frequency radiation from the networks that connect our phones. And while the coming rollout of 5G, or fifth-generation, wireless networks is expected to transmit data faster than ever, it will also increase the number of antennas sending signals to mobile devices, and potentially our exposure to radiation, with unclear health effects.

The guidelines recommend keeping phones away from the body when they’re not in use—in a backpack, for example, rather than a pocket—and sleeping with phones away from the bed. People may also choose to use speakerphone or a headset to make calls, rather than holding the phone to their heads. (They should remove their headsets when they’re not in use, though, as these devices also emit small amounts of RF frequency.)

If you are not 100% satisfied with any purchase made directly from Life Extension®, just return your purchase within 12 months of original purchase date and we will either replace the product for you, credit your original payment method or credit your Life Extension account for the full amount of the original purchase price (less shipping and handling).
Peer review is a vital part of any scientific study; it brings several more lifetimes of expertise into the room to rigorously check a study for any weak points. Melnick calls the peer reviewers’ choice to change some conclusions an unusual move; “It’s quite uncommon that the peer review panel changes the final determination,” he says, noting if anything, he’s seen peer reviewers downgrade findings, not upgrade them. “Typically when NTP presents their findings, the peer review almost in all cases goes along with that.” In this case, the peer reviewers felt the data—when combined with their knowledge of the cancers and with the study design itself—was significant enough to upgrade several of the findings.
Most of the research is attributed to "SPSU," which is presumably St. Petersburg State Polytechnic University, and some of the research, it is suggested, was conducted at the Kirov Military Medical Academy, though it's unclear why a military academy would conduct clinical research on civilian cell phone radiation. The names of the scientists who conducted these studies are conspicuously absent, as are any published results.
ShieldMe  On the ShieldMe site is a message from Wireless Connection CEO Rose Vitale addressing issues with the cellphone industry and she makes some good points.  As far as how ShieldMe works she states, " Our ShieldMe cases help deflect up to 99% of the harmful EMF, RF or microwave radiation emitted from a cellphone while carrying around or when on a call." The demonstration of the SheildMe case shows levels that like the "EMF protection cellphone cases" is many many times higher than levels EMF expert Larry Gust follows as a certified building biologist.   
In addition, the findings might be influenced by the fact that the study subjects owned cell phones that were in some cases manufactured two decades ago. The way we use cell phones and the networks they’re operated on have also changed since then. Last, cancer can develop slowly over decades, yet the studies have analyzed data over only about a five- to 20-year span.
Parents and consumer advocacy groups occasionally capture attention for voicing concerns about cellphones and other types of non-ionizing radio-frequency radiation exposure, such as the energy emitted from wifi routers in schools. In some cases, they have exaggerated what we know about the risks to kids, and rarely note that cellphones are also just one of many radiation sources we all live with. (Even the Earth itself, the air we breathe, and the sun and stars in our galaxy constantly give off radiation.)
A 2012 study by NCI researchers (25) compared observed glioma incidence rates in U.S. SEER data with rates simulated from the small risks reported in the Interphone study (6) and the greatly increased risk of brain cancer among cell phone users reported in the Swedish pooled analysis (19). The authors concluded that overall, the incidence rates of glioma in the United States did not increase over the study period. They noted that the US rates could be consistent with the small increased risk seen among the subset of heaviest users in the Interphone study. The observed incidence trends were inconsistent with the high risks reported in the Swedish pooled study. These findings suggest that the increased risks observed in the Swedish study are not reflected in U.S. incidence trends.
×