Using the gauss meter at varied locations, you can easily detect electromagnetic radiation “hot spots” where exposure to these ominous frequencies is the greatest. Armed with this crucial information, you can then avoid these areas, re-arranging furniture or electronic devices as needed in order to avoid unnecessary exposure to electromagnetic radiation.
The three most common brain tumor types — and the ones most cellphone and human health studies focused on — are gliomas (malignant tumors of the brain and spinal cord), meningiomas (mostly noncancerous tumors of the membranes surrounding the brain and spinal cord, though a small percentage are cancerous), and acoustic neuromas (noncancerous tumors on the main nerve that leads from the inner ear to the brain). Note that of these, gliomas are the main concern — they generally have more severe outcomes than meningiomas and acoustic neuromas.
A few other health concerns have been raised about cell phone use. One has been whether the RF waves from cell phones might interfere with medical devices such as heart pacemakers. According to the FDA, cell phones should not pose a major risk for the vast majority of pacemaker wearers. Still, people with pacemakers may want to take some simple precautions to help ensure that their cell phones don’t cause a problem, such as not putting the phone in a shirt pocket close to the pacemaker.
Note: Although it is true that cell phones emit low frequency magnetic fields that can be measured in milliGauss, they also emit high frequency microwave radiation which is what all the concern (and publicity) is about, and which the products below are designed to shield. Many clients have contacted us seeking a shield for BOTH magnetic fields and microwaves for their phone. Such a shield does not currently exist. To reduce your exposure to BOTH types of radiation, use an airtube headset and keep the phone itself at a distance.
He believes the FDA should put out guidance based on the results of the rat studies. “I would think it would be irresponsible to not put out indications to the public,” Melnick says. “Maintain a distance from this device from your children. Don’t sleep with your phone near your head. Use wired headsets. This would be something that the agencies could do right now.”
The peer reviewers did have some quibbles with the study; some wished it could have lasted longer (the rodents were exposed to radiation for two years) to catch later-developing tumors, for example, but others on the panel noted that the longer a rodent lives, the more likely it is to develop tumors regardless of radiation, making it harder to find the signal in the noise. Others wanted the researchers to have dissected the rodent brains more than they did, to seek hard-to-find tumors. But they noted that science is an iterative process; the study wasn’t perfect, but it’s better than anything that’s been done so far.
With our Phone Pouch, you can carry your phone at a safer distance. And with our powerful shielding material that lines the back of the Phone Pouch and deflects up to 99% of cell phone radiation (65-80 dB attenuation of frequencies from 30MHz to 1GHz), you’re exposed to even less harmful cell phone radiation. Our Phone Pouch uses well established science– inside each Pouch is a layer of fabric, interwoven with gossamer thin metallic threads that form a shield to deflect EMF radiation, working much like a Faraday cage.

There’s no question that portable phones and computers offer many conveniences and have made our lives easier in countless ways. For many people this convenience outweighs the worry of EMFs. My hope is that by becoming aware of the sources and dangers of cell phone radiation and EMFs, you’ll take steps to minimize exposure for both you and your family.

A series of studies testing different scenarios (called simulations by the study authors) were carried out using incidence data from the Nordic countries to determine the likelihood of detecting various levels of risk as reported in studies of cell phone use and brain tumors between 1979 and 2008. The results were compatible with no increased risks from cell phones, as reported by most epidemiologic studies. The findings did suggest that the increase reported among the subset of heaviest regular users in the Interphone study could not be ruled out but was unlikely. The highly increased risks reported in the Swedish pooled analysis were strongly inconsistent with the observed glioma rates in the Nordic countries (24).
(Some common flaws in these studies: The summaries of the evidence weren’t comprehensive, the researchers often didn’t look at the quality of the studies they found, and they failed to do other simple things that would limit bias from creeping in. They also relied on case-control studies, a poor method to determine causality — more on that soon.) So we didn’t include these eight reviews in our analysis.
3. A lab setting is the only legitimate way to show the effectiveness of our technology for a few main reasons: one, a controlled source is the only way to conduct a scientific study. Note that the controlled source that we used was specifically designed to simulate emissions from wireless electronics (RF and ELF emissions of various frequencies). Two, ambient levels in a non-controlled environment will affect readings, rendering the results inaccurate. Three, at-home equipment such as the meter used in the video is not suitable for the types of emissions by a wireless device, nor are they reliable.
EWG urges the FCC to include third party-produced cases and accessories in its cell phone testing policies to ensure that they do not compromise cell phone function and do not prevent a cell phone from complying with the Commission’s exposure limits. Manufacturers should publish the radiation data for a given phone when used directly next to the body and when used with the cases most commonly sold for a specific model.
The ultra thin (1mm) RadiCushion by Cellsafe slips into the cell phone case and redirects radiation away from the face of the phone. It's available in black or white but not recommended for use with aluminum or metallic cell phone cases. Test results show a SAR reduction of 96%. A slightly thicker (2mm) RadiCushion is available for iPad and iPad mini; it adheres to the back of the device and also provides SAR reductions of 96%. Visit their website for more information or watch this independent test which shows an 80% reduction and also compares it to the BlocSock:

Hi August and Tech Wellness Team. We at SafeSleeve salute you for your effort to educate and provide solutions for the hidden dangers of EMF radiation exposure from wireless electronics. Like you, we’ve worked extremely hard to provide a practical solution for EMF exposure and, as verified by our independent lab testing, we believe we’ve found an extremely effective and practical solution. While I cannot speak for the other devices you tested here, there are some key points about our SafeSleeve technology that we wanted to make sure you took into consideration:
The perfect way to shield your ears. Comfortable enough to sleep in, and stylish enough to wear in public. High shielding performance silver stretch fabric gives excellent radiofrequency and microwave shielding. Made of double thickness 2" wide 71% polyamide + 29% elastomer fiber. Ideal for cellphone shielding or any other activity when you need to shield your ears and forehead. Thin enough to fit under a hat or helmet. Durable and unwrinkleable, washable too (no bleach). Silver provides anti-bacterial properties and suppresses odor. Folds small for easy transport. Pretty Silver color.
So, you've read the numerous studies about the potentially harmful health effects of cell phone radiation and you are ready to something about it. Of course, you can use your phone sparingly and put it in airplane mode when possible, use a wired headset or speakerphone when on calls, and never store it in your pocket. However, is that realistic? How about for your kids? In today's world, with our increasing dependence on our cell phones, probably not!
There was also “equivocal” evidence that it raised the risk of heart conditions, and led to evidence of DNA damage. Baby rats born to mothers during the trial had lower birth weights. The scientists also found a statistically significant increase in lymphoma (cancer of the lymph nodes) among female mice and heightened rates of liver cancer in the male mice. All those findings were labeled “equivocal.”
Third, most of the studies published so far have focused on adults, rather than children. (One case-control study looking at children and teens did not find a significant link to brain tumors, but the small size of the study limited its power to detect modest risks.) Cell phone use is now widespread even among younger children. It is possible that if there are health effects, they might be more pronounced in children because their bodies might be more sensitive to RF energy. Another concern is that children’s lifetime exposure to the energy from cell phones will be greater than adults’, who started using them at a later age.
Some scientists have reported that the RF waves from cell phones produce effects in human cells (in lab dishes) that might possibly help tumors grow. However, several studies in rats and mice have looked at whether RF energy might promote the development of tumors caused by other known carcinogens (cancer-causing agents). These studies did not find evidence of tumor promotion.
There are fears that the electromagnetic radiation emitted from mobile phone handsets may harm health. In particular, there have been claims that it could affect the body’s cells, brain or immune system and increase the risk of developing a range of diseases from cancer to Alzheimer’s. Laboratory tests on mice have shown that radiation from mobile phones can have an adverse effect on their overall health. It is still not clear whether those findings can be applied directly to humans. A study by scientists in Finland, published in 2002, suggested that the electromagnetic radiation did affect human brain tissue. But they played down their findings saying more research was needed to see if the effects were the same in living people. Another study by scientists in Sweden, also published in 2002, claimed to have found a link between analogue mobile phones and brain tumours. It suggested users of “first generation” phones had a 30% higher risk of developing tumours than people who did not. However, the findings were controversial and there have been no similar studies into the effects of modern GSM phones. There have also been reports of people suffering from headaches, fatigue and loss of concentration after using their mobile phones. However, these claims have not been scientifically substantiated.

Bonus application! In addition to shielding magnetic fields, PaperSHIELD is also quite good at shielding radiowaves (cellphone, wifi, etc). And because of the adhesive backing, it can be adhered to almost any surface you need such as the inside or back of your cellphone case. (Use a near field meter to test RF shielding performance.) Note that it is not transparent, so it can't be used on the touch screen side. Cover the cut edges with sturdy tape as they can be sharp. 36 inches wide. Made in USA.
So of course now that we understand that the cases are not tested and just the material--it makes sense! We measured power density levels all around the case-the shielding material most likely isn't used "all over" because then the phone couldn't receive signal and wouldn't be able to engage in a call.  That's why we did not see even close to a 99% reduction when some cases were on the phone.  In fact, watch the video and you'll see some readings are more than 20% higher with a case on vs the naked phone.
The company's "Researches" page, for example, states that "Aires Technologies are more than 12 years (sic). For this period there have been conducted a number of studies on mechanisms of coherent transformers that effect on physical, chemical, technological and biological processes (sic). The studies were carried out in close collaboration with leading research and academic institutions."
The FCC provides information about the specific absorption rate (SAR) of cell phones produced and marketed within the last 1 to 2 years. The SAR corresponds with the relative amount of radiofrequency radiation absorbed by the head of a cell phone user (47). Consumers can access this information using the phone’s FCC ID number, which is usually located on the case of the phone, and the FCC’s ID search form.
Today there are more than two billion cell phone users being exposed every day to the dangers of electromagnetic radiation (EMR)—dangers government regulators and the cell phone industry refuse to admit exist. Included are: genetic damage, brain dysfunction, brain tumors, and other conditions such as sleep disorders and headaches.1-9 The amount of time spent on the phone is irrelevant, according to Dr. Carlo, as the danger mechanism is triggered within seconds. Researchers say if there is a safe level of exposure to EMR, it’s so low that we can’t detect it.
The three most common brain tumor types — and the ones most cellphone and human health studies focused on — are gliomas (malignant tumors of the brain and spinal cord), meningiomas (mostly noncancerous tumors of the membranes surrounding the brain and spinal cord, though a small percentage are cancerous), and acoustic neuromas (noncancerous tumors on the main nerve that leads from the inner ear to the brain). Note that of these, gliomas are the main concern — they generally have more severe outcomes than meningiomas and acoustic neuromas.
For example, cellphone manufacturers currently test these devices for compliance with FCC standards by placing them against the head, and near the torso with some separation. Just check out Apple’s iPhone manual: The company tests the specific absorption rate at a 5mm separation from the body. But if you wear your device in your pocket, you’re probably not going to have that 5mm separation, meaning you may be exposed to more radiation — perhaps enough to exceed current standards.
Studies in people: Another type of study looks at cancer rates in different groups of people. Such a study might compare the cancer rate in a group exposed to something like cell phone use to the rate in a group not exposed to it, or compare it to what the expected cancer rate would be in the general population. But sometimes it can be hard to know what the results of these studies mean, because many other factors that might affect the results are hard to account for.
The perfect way to shield your ears. Comfortable enough to sleep in, and stylish enough to wear in public. High shielding performance silver stretch fabric gives excellent radiofrequency and microwave shielding. Made of double thickness 2" wide 71% polyamide + 29% elastomer fiber. Ideal for cellphone shielding or any other activity when you need to shield your ears and forehead. Thin enough to fit under a hat or helmet. Durable and unwrinkleable, washable too (no bleach). Silver provides anti-bacterial properties and suppresses odor. Folds small for easy transport. Pretty Silver color.
Features an outstanding 38-pound puncture resistance. The multiple layer construction provides full protection against ESD, EMI/RFI and tribocharging. Because its moisture barrier performance exceeds foil laminates for low Moisture Vapor Transmission Rate (MVTR), particularly after flexing, whatever you place in the bag and seal properly is going to stay dry also! Does not provide magnetic shielding.
Taken together, the findings “confirm that RF radiation exposure has biological effects” in rats, some of them “relevant to carcinogenesis,” says Jon Samet, a professor of preventive medicine and dean of the Colorado School of Public Health, who did not participate in either study. Samet, however, cautioned the jury is still out as to whether wireless technology is similarly risky to people. Indeed, heart schwannomas are exceedingly rare in humans; only a handful of cases have ever been documented in the medical literature.
Cell phones emit low levels of radio frequency energy (i.e., radio frequency radiation) in the microwave range while being used. It is well known that high levels of RF can produce biological damage through heating effects (this is how your microwave oven is able to cook food). However, it is not known to what extent or through what mechanism, lower levels of RF might cause adverse health effects as well. Several research studies have shown that the radio frequency radiation from wireless phone antennae “appears to cause genetic damage in human blood,” while another case study uncovered a “statistically significant increase” in neuro-epithelial brain tumors among cell phone users. Other research has shown little or no adverse effects. ABC’s 20/20 News (May 26, 2000) took the five most popular phones sold in the US and tested them at a highly respected German laboratory. Four out of the five phones tested were above the SAR limit. One thing is for certain, similar to the case of cigarette smoking, it will take several tests and many years before the effects of radio frequency radiation on the human body are known.
The FCC has yet to implement GAO’s recommendations to more closely reflect real-life use. For a narrow subset of smartphones – those sold with lanyards or straps – the FCC advises manufacturers to test phones at a distance of no more than 5 mm from the body (FCC 2014). Yet the FCC has done nothing to ensure more realistic testing of most other smartphones or to account for the widespread use of accessories such as cases, which many different manufacturers produce with both metallic and non-metallic components.
Radiofrequency radiation is a form of electromagnetic radiation. Electromagnetic radiation can be categorized into two types: ionizing (e.g., x-rays, radon, and cosmic rays) and non-ionizing (e.g., radiofrequency and extremely low frequency, or power frequency). Electromagnetic radiation is defined according to its wavelength and frequency, which is the number of cycles of a wave that pass a reference point per second. Electromagnetic frequencies are described in units called hertz (Hz).
×