Only 0.010 inch thick, PaperSHIELD is flexible and can be easily cut with a scissors and shaped by hand into simple or very complex shapes. High saturation and moderate permeability make this ideal for shielding weak magnets, or stronger magnets with many layers of shielding. This material is particularly suited for achieving precise levels of partial shielding as you can add exactly the right number of layers to achieve the desired result. White paper on one side can be imprinted (by you). Peel and stick adhesive on the other side permits easy and semi-permanent mounting almost anywhere. Magnets will stick to it nicely.

Though some findings were reassuring, others do raise concerns. Specifically, three of the studies—one from Sweden, another from France, and a third that combined data from 13 countries—suggest a connection between heavy cell-phone use and gliomas, tumors that are usually cancerous and often deadly. One of those studies also hinted at a link between cell phones and acoustic neuromas (noncancerous tumors), and two studies hinted at meningiomas, a relatively common but usually not deadly brain tumor.
The Specific Absorption Rate test uses sophisticated instruments to measure the amount of radiation absorbed into the body, usually the head. At present, the generally recognized limit for absorbed electromagnetic energy is 1.6 watts per kilogram. All cell phones sold must be tested and have their compliance with this standard certified by their manufacturer. The electromagnetic fields from a cell phone depend upon the design of the cell phone and its antenna,how it operates, as well as how it is held and used. Tests conducted by the ABC show 20/20 has found that some of the country’s most popular cell phones can – depending on how they’re held – exceed the radiation limit. A cell phone’s antenna radiates in all directions. The health concern is about the radiation actually absorbed into the head, which is where cell phones are usually held. SAR tests conducted on the SAR Shield show that the product reduces SAR radiation by as much as 89%.
Pong’s research indicates that badly designed cell phone cases can partially block a phone’s antenna, making the device work harder to transmit signals. Due to gaps in the FCC’s cell phone regulations, a phone worn right next to the body and enclosed by a case that obstructs the antenna could expose the user to more radiation than the FCC’s legal limit.
The International Agency for Research on Cancer (IARC) is part of the World Health Organization (WHO). Its major goal is to identify causes of cancer. The IARC has classified RF fields as “possibly carcinogenic to humans,” based on limited evidence of a possible increase in risk for brain tumors among cell phone users, and inadequate evidence for other types of cancer. (For more information on the IARC classification system, see Known and Probable Human Carcinogens.)
The CERENAT study, another case–control study conducted in multiple areas in France from 2004 to 2006 using data collected in face-to-face interviews using standardized questionnaires (18). This study found no association for either gliomas or meningiomas when comparing regular cell phone users with non-users. However, the heaviest users had significantly increased risks of both gliomas and meningiomas.

“If you’re looking for ways to limit your exposure to the electromagnetic emissions from your cell phone, know that, according to the FTC, there is no scientific proof that so-called shields significantly reduce exposure from these electromagnetic emissions. In fact, products that block only the earpiece – or another small portion of the phone – are totally ineffective because the entire phone emits electromagnetic waves. What’s more, these shields may interfere with the phone’s signal, cause it to draw even more power to communicate with the base station, and possibly emit more radiation.”
According to the WHO, the "precautionary principle" is "a risk management policy applied in circumstances with a high degree of scientific uncertainty, reflecting the need to take action for a potentially serious risk without awaiting the results of scientific research." Other less stringent recommended approaches are prudent avoidance principle and as low as reasonably practicable. Although all of these are problematic in application, due to the widespread use and economic importance of wireless telecommunication systems in modern civilization, there is an increased popularity of such measures in the general public, though also evidence that such approaches may increase concern.[35] They involve recommendations such as the minimization of cellphone usage, the limitation of use by at-risk population (such as children), the adoption of cellphones and microcells with as low as reasonably practicable levels of radiation, the wider use of hands-free and earphone technologies such as Bluetooth headsets, the adoption of maximal standards of exposure, RF field intensity and distance of base stations antennas from human habitations, and so forth.[citation needed] Overall, public information remains a challenge as various health consequences are evoked in the literature and by the media, putting populations under chronic exposure to potentially worrying information.[36]
“We see either no change or very small increases in incidence in some tumor types,” Quinn Ostrom, the Baylor College of Medicine researcher who has been analyzing these cancer trends, explained. “I would be inclined to say this isn’t as much of an increase as you might expect if cellphones were causative [of brain tumors] due to the very sharp way use of these devices has gone up over the last 20 years.”

Cell-phone designs have changed a lot since the studies described above were completed. For example, the antennas—where most of the radiation from cell phones is emitted—are no longer located outside of phones near the top, closest to your brain when you talk, but are inside the phone, and they can be toward the bottom. As a result, the antenna may not be held against your head when you’re on the phone. That’s important because when it comes to cell-phone radiation, every milli­meter counts: The strength of exposure drops dramatically as the distance from your body increases.

to find the minimum distance the federal government recommends that your cell phone must be away from your body. Keeping it closer than the designated distance can result in a violation of the FCC Exposure Limit. Exceeding FCC levels is proven to result in burns, sterility and brain damage. Learn more about fine print instructions and see all the FCC warnings here.


But scientists disagree on how real—or how serious—these risks really are, and studies have not established any definitive links between health problems and radiofrequency (RF) energy, the type of radiation emitted by cell phones. “This document is intended to provide guidance for people who want to reduce their own and their families’ exposure to RF energy from cell phones,” the guidelines state, “despite this uncertainty.”
The base station is equipped with antennas for reception and transmission. In order to communicate, the mobile phones and the antennas at the base station emit radiowave radiation (see below). The mobile phone instrument transmits a lower amount of radiation than the one transmitted by the transmission center (cell site), but because the instrument is near the body, the body directly absorbs the energy from the instrument’s antenna.
INTEGRITY: Many manufactures claim near 100% EMF protection, referring to the radiation blocking material, NOT the protection you receive on a call. If you covered your whole phone with EMF blocking material, then you'd have no signal. Our EMF blocking material is used on the front cover only, providing you real EMF protection with no sacrifice in reception.
In conclusion: It is still unclear whether use of cellular technology is associated with an increased risk to develop malignant and benign tumors, but taking into account the results of recent studies, the Ministry of Health adopts the precautionary principle and follows the recommendations listed in the “Ministry of Health Recommendations” (below).
The Specific Absorption Rate that the FCC, with input from many other government institutions, decided on, is defined using an average of a 30-minute phone call with the cell phone held directly to the ear. Since modern cell phones are used in all sorts of manners, ie speakerphone, scrolling through social media, browsing the web, etc, a base had to be set.
The first one is easy, cellular frequencies vary between 450–2000MHz, but 800 or 900 MHz is the most common. The power emitted by a cell phone varies over the course of the call (higher when making initial contact, which lasts a few seconds). It can go up to 2 Watts at the start of a call, and can go down to .02 Watts during optimal operation [2]. Of course, most people barely use cell phones for calls, but I am using this example as a worst case scenario, because the phone is not right by your head when you are browsing Tinder.
Nice quality vinyl bumper sticker is a not-so-gentle reminder to fellow motorists of the one of the many dangers of cellphone use: distraction! If you ever get the chance, you can also explain the other hazards as well: reaction time, increased permeability of the blood-brain barrier, and possibly brain tumors. Good for cars, trucks, bikes, skates and just about any other moving vehicle.
We asked Dr. George Carlo his thoughts on EMF cases and shielding products, “most offer some protection, some of the time, to some people, because they can alter the immediate electromagnetic field environment around the person,” and immediately emphasizes the importance of “some,” which seems to tell us that it’s vastly unpredictable. “All waveforms in the environment are highly variable and they interact with other factors in the environment that make them even more variable.” This pretty much sums up that the artificial electromagnetic energy universe is vastly unpredictable.
The frequency of radiofrequency electromagnetic radiation ranges from 30 kilohertz (30 kHz, or 30,000 Hz) to 300 gigahertz (300 GHz, or 300 billion Hz). Electromagnetic fields in the radiofrequency range are used for telecommunications applications, including cell phones, televisions, and radio transmissions. The human body absorbs energy from devices that emit radiofrequency electromagnetic radiation. The dose of the absorbed energy is estimated using a measure called the specific absorption rate (SAR), which is expressed in watts per kilogram of body weight.
×