Users were defined as anyone who made at least one phone call per week for six months between 1982 and 1995. So any person who made 26 calls was a cell phone user and therefore considered exposed to radiation. Those with less than 26 calls were non-users. In reality, the radiation exposure between users and non-users defined in this manner is not discernable.
Wherever you come out on the cellphone and cancer question, one thing is clear: How we live with cellphones, along with our exposure to the radiation they emit, has changed dramatically over the past several decades. That has policy implications; it’s something regulators, researchers, and cellphone companies need to pay attention to. In that context, a few things should happen:
Pong’s claims for its case have stood up to the scrutiny of Wired magazine and the Better Business Bureau (Advertising Self-Regulation Council 2012; Ganapati 2009). In tests conducted by Cetecom, a cell phone radiation certification lab, and observed by a reporter from Wired magazine, an iPhone 3G tested without a case had a maximum SAR of 1.18 W/kg when held at the ear. The same phone tested with a Pong case had a maximum SAR of 0.42 W/kg (Ganapati 2009).  
Pong’s claims for its case have stood up to the scrutiny of Wired magazine and the Better Business Bureau (Advertising Self-Regulation Council 2012; Ganapati 2009). In tests conducted by Cetecom, a cell phone radiation certification lab, and observed by a reporter from Wired magazine, an iPhone 3G tested without a case had a maximum SAR of 1.18 W/kg when held at the ear. The same phone tested with a Pong case had a maximum SAR of 0.42 W/kg (Ganapati 2009).  

Some products (http://www.safecell.net/reports01.html for example) are tested using a piece of shielding material in a laboratory test jig. These tests legitimately show the amount of radiation which penetrates the shield, but results will be very different when compared to putting a small amount of the same shield on a large transmitter like a cellphone. Remember, the entire phone radiates. Placing a small amount of shielding, even if it is an effective shielding material, only shields that small area at best. Think about this analogy: no light will penetrate a penny as it is a very effective light shield, but it is silly to think that holding a penny up to the sun will put you in darkness.
An analysis of data from NCI's Surveillance, Epidemiology, and End Results (SEER) Program evaluated trends in cancer incidence in the United States. This analysis found no increase in the incidence of brain or other central nervous system cancers between 1992 and 2006, despite the dramatic increase in cell phone use in this country during that time (22).

The outside is made of a synthetic polyurethane that feels just like leather, although genuine leather will be available soon. The inside is made of a microfiber that won’t scratch the phone. The materials are also designed to protect your phone, should you drop it. Most importantly, an integrated FCC-certified lab tested radiation-shielding foil not only deflects and absorbs RF, ELF and Thermal radiation to greatly reduce your exposure, but it also blocks RFID signals, so that hackers cannot steal your credit card information by scanning it from afar. And no, the case will not affect phone or battery performance.


The Specific Absorption Rate that the FCC, with input from many other government institutions, decided on, is defined using an average of a 30-minute phone call with the cell phone held directly to the ear. Since modern cell phones are used in all sorts of manners, ie speakerphone, scrolling through social media, browsing the web, etc, a base had to be set.

Researchers need funding to move fast to study the potential health effects of 5G networks and how they might change our exposures to radiation. “So far, we’ve got research that’s done on 3G and 4G but not 5G,” said Brawley of the American Cancer Society. “We do think the answers [about cell radiation’s cancer effects] for 5G may be different from the answers for 4G or 3G. ... As these types of radio waves and energy change over time, the answers [about their health effects] may change.”
This 2009 meta-analysis, published in the Journal of Clinical Oncology, looked at 23 case-control studies of the risk of both malignant and benign tumors from mobile phone use. When the authors included all 23, they found no increased risk of tumors. When they crunched certain subsets of the data — like looking only at studies that were blinded, or people who used cellphones for 10 or more years — they did find increases in tumor risks. Confusingly, when they divided up the analysis by tumor type, they found no increase in risk for glioma and acoustic neuroma, and a decrease in risk of meningioma.
They determined there is “clear evidence” that male rats exposed to high levels of radio frequency radiation — typical of 2G and 3G networks when the study was designed — developed heart schwannomas. There was also “some evidence” of brain and adrenal gland tumors, again in the male rats, but the exposed female rats, and male and female mice, did not have consistent patterns of disease.
Most of these early studies did not find an increase in the risk for developing tumors among mobile phone users. The main problem characterizing these studies stems from the fact that the development of cancer (in particular brain tumors) takes a very long time (at least 10-20 years and up to 40 years or more), while mobile phone technology is relatively new (as aforesaid, popular use began only in the mid-90s). Hence, these studies could not demonstrate risk even if such existed.

* This specification establishes the requirements for heat-sealable, electrostatic protective, flexible barrier materials used for the military packaging of microcircuits, sensitive semiconductor devices, sensitive resistors, and associated higher assemblies. In addition, the type I materials provide for water vapor-proof protection and attenuation of electromagnetic radiation.
Over time, the number of cell phone calls per day, the length of each call, and the amount of time people use cell phones have increased. Because of changes in cell phone technology and increases in the number of base stations for transmitting wireless signals, the exposure from cell phone use—power output—has changed, mostly lowered, in many regions of the United States (1).
×