In addition, cellphones potentially harm our health in ways that have nothing to do with cancer. The effect on sperm is concerning to Moskowitz, the director of the Center for Family and Community Health at the Berkeley School of Public Health, and he noted that our current cellphone regulations also don’t account for these potential effects. Plus, we still don’t know what steady exposure to this kind of radiation from devices means for kids.
The Ministry of Health Medical Administration circular (from 2002) addressed to hospital Directors, states that use of mobile phones and wireless handheld transceivers (walkie talkie) in the hospital, must on the one hand guarantee the patient’s wellbeing and safety, and on the other hand, allow the staff, the patients and their families to enjoy the service benefits. This circular outlines the areas where use of mobile phones is strictly forbidden and areas where use is permitted (while keeping an appropriate safety distance from areas where life-supporting equipment or systems are operated).
Phone radiation isn’t like the radiation from, say, a nuclear meltdown. That’s what’s known as “ionizing” radiation — it’s high energy and capable of damaging your DNA, which researchers have determined leads to cancer. Phones emit a much lower energy radiation (lower even than visible light) that’s considered to be “non-ionizing.” We know non-ionizing radiation doesn’t damage DNA the way that ionizing radiation does. But the question remains whether it could still react with the body in some other way that might lead to problems from longterm exposure.

Stick on anti-radiation protection shields etc are often made of metal which may block signal and prevent reliable mobile phone communications with signal towers. Mobile phones recognise the potential for a dropped signal and actually increase power to compensate. The result is a fast draining battery and an even higher radiation output as a result of using the product (an exception to this are shields that are placed in between the phone and the user as these do not impede signal to cell towers to any significant degree)
If you paid an electrical engineer to shield something for you, depending on the application, they would either use MuMetal or this type of mesh shielding. It’s not some new technology, so there’s no question of whether it works, because it does. Regardless, it would still be nice for them to publish third-party independent testing to reassure people of this.
Specific Absorption Rate (SAR) is an indicator for calculating the level of radiation absorbed in the body. This indicator represents the rate of energy absorption by the tissue and is expressed in units of Watt/kg. The Consumer Protection Regulations (information on non-ionizing radiation from mobile phones) of 2002, stipulate the duty to label the product, specifying the radiation level of the phone’s model and the maximum permitted radiation level. This regulation allows to compare the emitted radiation level between different instruments and to take this into consideration when weighing the factors determining the choice of a new instrument at the time of its purchase.
Single studies have alternately suggested cellphones are driving up cancer rates and that they pose no health threat at all. In 2011, the World Health Organization (WHO) declared that the devices are a “Class 2B carcinogen,” meaning they possibly can cause cancer in humans — but that’s also a distinction they share with pickles, aloe vera, and being a carpenter.
Moving the meter around the case, we detect readings on the side, back and front of the case. We use the multi-directional TES 593 meter which measures 10 MHz to 8GHz. We use the unit of micro-watts per square centimeter, which looks like this little symbol: μW/cm² and we use it on the max setting which shows the maximum measured value. In non-science speak: the highest level of RF we see, which could be from the back the side or the front. 
The cell phone industry constantly guards its financial interests, but unfortunately, an unwitting public can be harmed in the process, says Dr. Carlo. “Industry-funded studies in many cases now produce industry-desired outcomes. By tampering with the integrity of scientists, scientific systems and public information steps over the lines of propriety that are appropriate for protecting business interests—especially when the casualty of the interference is public health and safety.”
"On the same [IARC] scale that said phone use was possibly carcinogenic, smoking is at the highest level. They are class 1 carcinogens; that's beyond doubt, they definitely do cause cancer ... There's an absolute difference between substances, where the evidence says that there is no doubt about the fact that they cause cancer, compared to mobile phones, where they say it is still possible because the data over ten years use still isn't in."
“The near field plume is the one we’re most concerned with. This plume that’s generated within five or six inches of the center of a cell phone’s antenna is determined by the amount of power necessary to carry the signal to the base station,” he explains. “The more power there is, the farther the plume radiates the dangerous information-carrying radio waves.”
It also means regulators need to make sure their policies reflect new levels of exposure. The Federal Communications Commission currently oversees cellphone safety and sets the limits for how much radiation people should be exposed to. (This is measured by the specific absorption rate — the rate at which the body absorbs radio frequency energy — and the current limit for cellphones is 1.6 watts of energy per kilogram of tissue. The whole-body threshold is a SAR value of 0.08 watts per kilogram, and the tower radiation limit is 10 watts per square meter.)
What the study showed: Self-reported cell phone use was not associated with an increased risk of glioma, meningioma, or non-central nervous system tumors. Although the original published findings reported an association with an increased risk of acoustic neuroma (14), this association disappeared after additional years of follow-up of the cohort (15).
×