First, you must have a proper meter. To check for magnetic field emissions, an AC Gaussmeter will work. Most AC gaussmeters will have an internal probe. Simply position the gaussmeter on the phone. Note carefully where the meter is positioned. Make a call and watch the readings. Notice the highest and lowest readings, and make a mental note of the "average" reading. Now, insert the magnetic shield, and repeat.
The peer reviewers did have some quibbles with the study; some wished it could have lasted longer (the rodents were exposed to radiation for two years) to catch later-developing tumors, for example, but others on the panel noted that the longer a rodent lives, the more likely it is to develop tumors regardless of radiation, making it harder to find the signal in the noise. Others wanted the researchers to have dissected the rodent brains more than they did, to seek hard-to-find tumors. But they noted that science is an iterative process; the study wasn’t perfect, but it’s better than anything that’s been done so far.
Disclaimer: The content of this website is based on research conducted by TTAC Publishing, LLC, unless otherwise noted. The information is presented for educational purposes only and is not intended to diagnose or prescribe for any medical or psychological condition, nor to prevent, treat, mitigate or cure such conditions. The information contained herein is not intended to replace a one-on-one relationship with a doctor or qualified healthcare professional. Therefore, this information is not intended as medical advice, but rather a sharing of knowledge and information based on research and experience. TTAC Publishing encourages you to make your own health care decisions based on your judgment and research in partnership with a qualified healthcare professional.
To check for radiowave emissions, use an RF meter with Near Field antenna. Again, position the antenna loop on the phone (because the entire antenna stem has some sensitivity, it is best to position the entire antenna over the area that will be shielded). Note carefully where the loop is positioned. Make a call and watch the readings. Notice the highest and lowest readings, and make a mental note of the "average" reading. Now, insert the shield, and repeat.
This 2017 systematic review and meta-analysis, published in PLOS One, looked at mobile phone use in case-control studies and the risk of glioma. “Our results suggest that long-term mobile phone use may be associated with an increased risk of glioma,” they wrote. The researchers found an association between mobile phone use and low-grade glioma in the people who used cellphones regularly or for 10 years or more. “However, current evidence is of poor quality and limited quantity,” they added, and called for prospective studies to confirm the results.
For now, it’s probably better not to spend too much of your time worrying: you’re surrounded by cellphone signals, Wi-Fi signals, and all other kinds of radio frequency radiation day in and out — not just when you put your phone up to your face. And until the evidence suggests otherwise, all of this is still considered less of a cancer risk than eating red meat (which you shouldn't freak out about that much either).
The Blocsock came quickly, ordered from the UK which was sent Royal Air Express at no extra cost, and fit my Motorola Triumph perfectly. They sell different sized Blocsocks in different colors, so if you order one, make sure it fits your phone. The Amazon vendor based in the UK, Cell Phone Radiation, was very helpful, answering my email promptly so I knew what model to order for my phone.
Jump up ^ For example, Finland "Radiation and Nuclear Safety Authority: Children's mobile phone use should be limited". Finnish Radiation and Nuclear Safety Authority (STUK). 7 January 2009. Archived from the original on 11 January 2010. Retrieved 20 January 2010. and France "Téléphone mobile, DAS et santé" [Mobile telephones, SAR and health] (PDF). Votre enfant et le téléphone mobile [Your child and mobile telephony]. Association Française des Opérateurs Mobiles (AFOM)[French Mobile Phone Operators' Association] et l’Union Nationale des Associations Familiales (UNAF) [National Federation of Family Associations]. 31 January 2007. Retrieved 20 January 2010.
But he cautioned that the exposure levels and durations were far greater than what people typically encounter, and thus cannot “be compared directly to the exposure that humans experience.” Moreover, the rat study examined the effects of a radio frequency associated with an early generation of cellphone technology, one that fell out of routine use years ago. Any concerns arising from the study thus would seem to apply mainly to early adopters who used those bygone devices, not to users of current models.
A 2012 study by NCI researchers (25) compared observed glioma incidence rates in U.S. SEER data with rates simulated from the small risks reported in the Interphone study (6) and the greatly increased risk of brain cancer among cell phone users reported in the Swedish pooled analysis (19). The authors concluded that overall, the incidence rates of glioma in the United States did not increase over the study period. They noted that the US rates could be consistent with the small increased risk seen among the subset of heaviest users in the Interphone study. The observed incidence trends were inconsistent with the high risks reported in the Swedish pooled study. These findings suggest that the increased risks observed in the Swedish study are not reflected in U.S. incidence trends.

Scientists have reported adverse health effects of using mobile phones including changes in brain activity, reaction times, and sleep patterns. More studies are underway to try to confirm these findings. When mobile phones are used very close to some medical devices (including pacemakers, implantable defibrillators, and certain hearing aids) there is the possibility of causing interference with their operation. There is also the potential of interference between mobile phones signals and aircraft electronics. Some countries have licensed mobile phone use on aircraft during flight using systems that control the phone output power.
I did a lot of research prior to purchasing and came down to this one as the best/most tested and proven option. Happy with the cover. I don’t have a way to actually test the efficacy of it but it’s a quality product otherwise. I haven’t dropped it but there’s enough room around the edges that it seems like it would have a good cushion to blunt the impact when I do. I’d recommend trying it if you like the looks of It.
You’ll notice radiation is split into two categories here: ionizing and non-ionizing. The waves emitted from radios, cellphones and cellphone towers, Wi-Fi routers, and microwaves are referred to as “radio-frequency” radiation. That’s a type of “non-ionizing” radiation, since it doesn’t carry enough energy to “ionize” — or strip electrons from atoms and molecules. (Other sources of non-ionizing radiation, as you can see in our chart, include visible and infrared light.)
Like we talked about in the last section, SAR limits that are reported are the maximum possible radiation emitted from the device, however, this level is not what is common with the regular use of the device. Just because one cell phone has a higher maximum SAR level, doesn’t mean that the radiation level of normal use isn’t higher or lower than another device with a different maximum SAR level.
The energy of electromagnetic radiation is determined by its frequency; ionizing radiation is high frequency, and therefore high energy, whereas non-ionizing radiation is low frequency, and therefore low energy. The NCI fact sheet Electromagnetic Fields and Cancer lists sources of radiofrequency radiation. More information about ionizing radiation can be found on the Radiation page.
×