There's a lot of talk in the news these days about whether or not cell phones emit enough radiation to cause adverse health effects. The concern is that cell phones are often placed close to or against the head during use, which puts the radiation in direct contact with the tissue in the head. There's evidence supporting both sides of the argument.
At high power levels, RF waves can heat up water molecules (which is how microwave ovens work). Scientists used to focus their concerns on the possibility that such heating of human tissue, which is mostly water, might damage cells. In fact, the FCC’s test of cell-phone emissions—which was set in 1996 and which all phones must pass before being allowed on the market—is based on that effect.
"Someone claiming they need to reduce [the safe SAR level of 2 W/kg] by 90-percent — they just have no evidence to make that claim, and they are actually playing on the fact that people will be concerned enough about the possible cancer risk, although they don't understand that there's no sufficient data yet to make a statement about an actual cancer risk," said Professor Olver.
That’s because cell phones emit electromagnetic fields (EMFs) or electromagnetic radiation, which has the potential to damage the cells in the body. In fact, the International Agency for Research on Cancer classifies EMFs from cell phones as possible carcinogens. EMFs can interfere with the body’s natural electrical system and disrupt sleep, immune system function, hormone production, and the healing process. Kevin Byrne, president of EMF Solutions, also points out the simultaneous increase in conditions such as chronic pain, depression, anxiety, chronic fatigue syndrome, and Alzheimer’s disease and the significant rise in EMF exposure.

Users were defined as anyone who made at least one phone call per week for six months between 1982 and 1995. So any person who made 26 calls was a cell phone user and therefore considered exposed to radiation. Those with less than 26 calls were non-users. In reality, the radiation exposure between users and non-users defined in this manner is not discernable.
Generally speaking, the near-field refers to the RF field close to the antenna and the far-field is the RF field further away from the antenna. Often times when you use your cell phone, your body is often located in the near-field (one wavelength or less) of the cell phone antenna. It is especially concerning when you hold your phone next to your head or wear it on your body as you can be exposed to very intense near-field radiation from the phone.

Note: Although it is true that cell phones emit low frequency magnetic fields that can be measured in milliGauss, they also emit high frequency microwave radiation which is what all the concern (and publicity) is about, and which the products below are designed to shield. Many clients have contacted us seeking a shield for BOTH magnetic fields and microwaves for their phone. Such a shield does not currently exist. To reduce your exposure to BOTH types of radiation, use an airtube headset and keep the phone itself at a distance.
Because of inconsistent findings from epidemiologic studies in humans and the lack of clear data from previous experimental studies in animals, in 1999 the Food and Drug Administration nominated radiofrequency radiation exposure associated with cell phone exposures for study in animal models by the U.S. National Toxicology Program (NTP), an interagency program that coordinates toxicology research and testing across the U.S. Department of Health and Human Services and is headquartered at the National Institute of Environmental Health Sciences, part of NIH.
The government’s policies must change. Cell phone users should make their voices heard to prompt the FCC and manufacturers of cell phones and cases to ensure that these accessories never increase and, to the extent possible, decrease, users’ radiation exposure. At minimum, the FCC must take cell phone cases into consideration when it updates its standards to ensure that the use of a case will not expose people to more radiation than its legal SAR limit.  
There’s not a lot of research on the effects of cell-phone use on children’s and teens’ health, the report acknowledges, but some studies have suggested that it may be associated with hearing loss, ringing in the ears, headaches and decreased well-being. Children who use cell phones will also have more years of exposure to RF energy over their lifetimes than people who started using them as adults, which leads some doctors to recommend added caution.

Pong’s research indicates that badly designed cell phone cases can partially block a phone’s antenna, making the device work harder to transmit signals. Due to gaps in the FCC’s cell phone regulations, a phone worn right next to the body and enclosed by a case that obstructs the antenna could expose the user to more radiation than the FCC’s legal limit.
Because of inconsistent findings from epidemiologic studies in humans and the lack of clear data from previous experimental studies in animals, in 1999 the Food and Drug Administration nominated radiofrequency radiation exposure associated with cell phone exposures for study in animal models by the U.S. National Toxicology Program (NTP), an interagency program that coordinates toxicology research and testing across the U.S. Department of Health and Human Services and is headquartered at the National Institute of Environmental Health Sciences, part of NIH.
Peer review is a vital part of any scientific study; it brings several more lifetimes of expertise into the room to rigorously check a study for any weak points. Melnick calls the peer reviewers’ choice to change some conclusions an unusual move; “It’s quite uncommon that the peer review panel changes the final determination,” he says, noting if anything, he’s seen peer reviewers downgrade findings, not upgrade them. “Typically when NTP presents their findings, the peer review almost in all cases goes along with that.” In this case, the peer reviewers felt the data—when combined with their knowledge of the cancers and with the study design itself—was significant enough to upgrade several of the findings.
As a good thing to keep in mind, there are hundreds of thousands of people suffering from EHS in the world. Some of them live in forests, tents, and anywhere they can get away from society and EMFs because their symptoms are so bad when exposed. I have not heard one single EHS person claim that any of these types of devices work. They sure don’t for me. Most EHS sufferers are so desperate that they have researched and tried just about everything. Getting away from EMFs, or blocking them with material that does actually block them, like as a Faraday cage, is what works. And this is clearly what the scientific evidence shows. If these devices worked, that would be fabulous. One could spend $100 and be well, instead of having their life turned upside down, and in the worst cases as with some, committing suicide due to complete hopelessness and helplessness.. However, that is not the case. To further prove whether they work or not, one could wear one, and measure with a meter designed to measure EMF absorption in the body (they exist now). Has the manufacturer had this done, and is their evidence of it? An EHS person can tell without a meter anyway, but to prove to others, this might be a good idea.

We used a few measuring devices to test and see if this product actually blocks radiation and RFID, including a very sophisticated EMF reader. I am glad to say that this is actually a very effective way to reduce radiation. It is most effective on the front side, and when you have it closed and latched, there is very little exposure - only along the top, side and bottom opening.

To find out about the state of research on the link between phones and cancer, we spoke with Jonathan Samet, dean of the Colorado School of Public Health and an expert in phone radiation who led a World Health Organization working group on the subject. In 2011, the WHO group deemed phone radiation “possibly carcinogenic,” which is less certain than other classifications, but isn’t an outright “no” either. Six years later, Samet said the evidence in either direction is still mixed and that for the time being, there remains “some indication” of risk.
Cooper's prototype arrived on the market a decade later at the staggering price of $3,995. Designed by Rudy Krolopp, it was known as the Motorola DynaTAC 8000X, or simply "the brick.” Featuring 20 large buttons and a long rubber antenna, it measured about 11 inches high, weighed almost 2 pounds, provided one hour of battery life and could store 30 phone numbers.
I also searched around to see if cell phone radiation was anything to worry about anyway. I turned up enough information from a lot of different credible sources to convince me it was worth protecting against the possible damaging effects of this radiation. IF there is no real health impact, then having a protective device would be overkill, but I figured better overkill than discover in time people started developing problems as a result of heavy cell phone use.
Using a speaker/personal speakerphone or earplug (not wireless) during conversation - distancing the mobile phone from the user’s body reduces his exposure to the radiowave radiation. Therefore, keep the mobile phone at a distance from the body (do not carry it on the body, such as in the belt, pocket or on a neck strap). Obviously, reducing the amount and duration of calls on the mobile phone is another simple measure to reduce exposure.
The exact source of radiation in a cell phone is from the transmitter, a device located near the antenna that converts audio data into electromagnetic waves. The amount of radiation a cell phone can emit is limited by legal restrictions in the U.S., Canada and Europe. Additionally, the average radiation levels of most mobile phones are available to the public, courtesy of the Federal Communications Commission in the U.S.
Researchers have carried out several types of epidemiologic studies in humans to investigate the possibility of a relationship between cell phone use and the risk of malignant (cancerous) brain tumors, such as gliomas, as well as benign (noncancerous) tumors, such as acoustic neuroma (tumors in the cells of the nerve responsible for hearing that are also known as vestibular schwannomas), meningiomas (usually benign tumors in the membranes that cover and protect the brain and spinal cord), and parotid gland tumors (tumors in the salivary glands) (3).
×