The following charts list SAR levels for the Apple iPhone, Samsung Galaxy S, as well as 20 of the highest SAR level cellphones and 20 of the lowest SAR level cellphones. The list provides the maximum possible SAR level from the phone (many phones have differing SAR levels depending on where and how the phone is used). If your phone is not on either list, you can find the SAR level for your specific phone by checking the online FCC database.
In one type of study, called a case–control study, cell phone use is compared between people with these types of tumors and people without them. In another type of study, called a cohort study, a large group of people who do not have cancer at study entry is followed over time and the rate of these tumors in people who did and didn’t use cell phones is compared. Cancer incidence data can also be analyzed over time to see if the rates of brain tumors changed in large populations during the time that cell phone use increased dramatically. These studies have not shown clear evidence of a relationship between cell phone use and cancer. However, researchers have reported some statistically significant associations for certain subgroups of people.

It also means regulators need to make sure their policies reflect new levels of exposure. The Federal Communications Commission currently oversees cellphone safety and sets the limits for how much radiation people should be exposed to. (This is measured by the specific absorption rate — the rate at which the body absorbs radio frequency energy — and the current limit for cellphones is 1.6 watts of energy per kilogram of tissue. The whole-body threshold is a SAR value of 0.08 watts per kilogram, and the tower radiation limit is 10 watts per square meter.)
That mystery probably stokes fears about cellphone radiation instead of soothing them, though — in part because of how we in the media cover the rare and frightening. We’ve seen the same thing with fear over nuclear power plants, according to a paper published in Science in the 1980s by psychologist Paul Slovic. “Because nuclear risks are perceived as unknown and potentially catastrophic, even small accidents will be highly publicized and may produce large ripple effects,” Slovic wrote.
Instead of more animal and even epidemiological studies, he thinks researchers should focus on finding the mechanisms by which cellphone radiation may affect human health. Since we’ll never have an RCT on cellphones and cancer, he added, studies should measure actual cellphone use and exposure to radio-frequency radiation, instead of estimations of how much people are exposed (which most studies currently do).
Specifically, we looked for studies that measured rates of acoustic neuromas, gliomas, meningiomas, and thyroid cancers. We also narrowed our search to studies that looked at the effect of radio-frequency radiation originating from an actual cellphone, rather than experimental equipment. We did this because we wanted evidence that could apply to real life, not specific laboratory settings or hypothetical outcomes.
When the draft results of the papers were published earlier this year, all results were labeled “equivocal,” meaning the study authors felt the data weren’t clear enough to determine if the radiation caused the health effects or not. But the panel of peer reviewers (among them brain and heart pathologists, toxicologists, biostaticians, and engineers) re-evaluated the data and upgraded several of the conclusions to “some evidence” and “clear evidence.”

I can’t count how many times I’ve heard people speculate, joke, or jokingly speculate that their cellphone might be giving them cancer. It comes from a very reasonable place of discomfort — few people understand how radiation works, we put our phones right beside our brains all the time, and technology in general often feels like it ought to be causing some sort of societal ill.
Pong’s research indicates that badly designed cell phone cases can partially block a phone’s antenna, making the device work harder to transmit signals. Due to gaps in the FCC’s cell phone regulations, a phone worn right next to the body and enclosed by a case that obstructs the antenna could expose the user to more radiation than the FCC’s legal limit.
Considering the current standards in the State of Israel and due to the distance from the base stations, the radiation that reaches people from this source is extremely low. Although direct studies that will test the effects of antennas on human health are not feasible, considering the aforesaid, this probably does not pose a significant health risk.

Specific Absorption Rate is an indicator of how much EMF radiation body tissue absorbs when you’re using a cell phone and is one way to measure and compare the harm of different devices. In this article, I wanted to provide a resource to compare and contrast the SAR levels of many popular phones and talk a bit about what Specific Absorption Rate is, and how we can use it.
In 2015, the European Commission Scientific Committee on Emerging and Newly Identified Health Risks concluded that, overall, the epidemiologic studies on cell phone radiofrequency electromagnetic radiation exposure do not show an increased risk of brain tumors or of other cancers of the head and neck region (2). The Committee also stated that epidemiologic studies do not indicate increased risk for other malignant diseases, including childhood cancer (2).
Also noteworthy is that the studies evaluated radiation exposures in different ways. The NTP looked at “near-field” exposures, which approximate how people are dosed while using cell phones. Ramazzini researchers looked at “far-field” exposures, which approximate the wireless RF radiation that bombards us from sources all around us, including wireless devices such as tablet and laptop computers. Yet they generated comparable results: Male rats in both studies (but not mice or female animals) developed schwannomas of the heart at statistically higher rates than control animals that were not exposed.
The peer reviewers did have some quibbles with the study; some wished it could have lasted longer (the rodents were exposed to radiation for two years) to catch later-developing tumors, for example, but others on the panel noted that the longer a rodent lives, the more likely it is to develop tumors regardless of radiation, making it harder to find the signal in the noise. Others wanted the researchers to have dissected the rodent brains more than they did, to seek hard-to-find tumors. But they noted that science is an iterative process; the study wasn’t perfect, but it’s better than anything that’s been done so far.
Parents and consumer advocacy groups occasionally capture attention for voicing concerns about cellphones and other types of non-ionizing radio-frequency radiation exposure, such as the energy emitted from wifi routers in schools. In some cases, they have exaggerated what we know about the risks to kids, and rarely note that cellphones are also just one of many radiation sources we all live with. (Even the Earth itself, the air we breathe, and the sun and stars in our galaxy constantly give off radiation.)
For now, it’s probably better not to spend too much of your time worrying: you’re surrounded by cellphone signals, Wi-Fi signals, and all other kinds of radio frequency radiation day in and out — not just when you put your phone up to your face. And until the evidence suggests otherwise, all of this is still considered less of a cancer risk than eating red meat (which you shouldn't freak out about that much either).
One of the most robust animal studies in the world comes from the US government. In 1999, during the Clinton administration, the Food and Drug Administration asked the National Toxicology Program (NTP) to study the toxicity and cancer-causing capability of cellphone radio-frequency radiation. At the time, health officials felt epidemiological studies in humans wouldn’t answer these questions, so the NTP embarked on studies in rats and mice.
Perhaps more importantly, what types of radiation are causing, or likely to cause, or are suspected of causing, harm to humans? Is it the “harmonics” from the transmitter? Is it the RF from the circuitry? Is it the primary frequency on which the cell phone operates? This is important to understand. If the problem is the primary frequency on which the cell phone operates then forget the case and ditch the cell phone.
To answer this question, Lloyd uses an analogy of “smoke and a chimney” to explain how a Pong case works.  It is unfortunate — given Lloyd’s personal experience with electrohypersensitivity and his straightforward knowledge of how to measure RF exposure — that pure “smoke and mirrors” clouded his better judgement when reviewing the Pong case for cell phone radiation safety.

In addition, cellphones potentially harm our health in ways that have nothing to do with cancer. The effect on sperm is concerning to Moskowitz, the director of the Center for Family and Community Health at the Berkeley School of Public Health, and he noted that our current cellphone regulations also don’t account for these potential effects. Plus, we still don’t know what steady exposure to this kind of radiation from devices means for kids.
I have not gotten a cell phone, I was gifted a tablet, but it stays off most of the time, I use a desktop PC and my home phone is still landline but cordless. For me it’s been a bit of mixed bag in that I don’t want to rely so heavily on technology to do and remember things for me. When I hear about the new and latest tech that can now do X,Y, or Z for you, I think of the two little boys in the 80’s Cafe in BTTF.
This substantially changes the debate on whether cell phone use is a cancer risk. Up until this point, the federal government and cell phone manufacturers operated on the assumption that cell phones cannot by their very nature cause cancer, because they emit non-ionizing radiation. Whereas ionizing radiation—the kind associated with x-rays, CT scans, and nuclear power plants, among others—definitely causes cancer at high enough doses, non-ionizing radiation was believed to not emit enough energy to break chemical bonds. That meant it couldn’t damage DNA, and therefore couldn’t lead to mutations that cause cancer.
If you are not 100% satisfied with any purchase made directly from Life Extension®, just return your purchase within 12 months of original purchase date and we will either replace the product for you, credit your original payment method or credit your Life Extension account for the full amount of the original purchase price (less shipping and handling).
A recent small study in people has shown that cell phones may also have some other effects on the brain, although it’s not clear if they’re harmful. The study found that when people had an active cell phone held up to their ear for 50 minutes, brain tissues on the same side of the head as the phone used more glucose than did tissues on the other side of the brain. Glucose is a sugar that normally serves as the brain’s fuel. Glucose use goes up in certain parts of the brain when it is in use, such as when we are thinking, speaking, or moving. The possible health effect, if any, from the increase in glucose use from cell phone energy is unknown.
Mobile or cell phones are now a days an integral part of modern telecommunications in every individual life. In many countries, over half of the population use mobile phones and the mobile phone market is growing rapidly. Saudi Arabia rank first among the countries of the gulf region with highest proportion of mobile users, a study conducted by United Nations Conference on Trade and Development (UNCTAD). In gulf countries, Oman ranked second, followed by Kuwait and the UAE. As billions of people use mobile phones globally, a small increase in the incidence of adverse effects on health could have major public health implications on long term basis. Besides the number of cell phone calls per day, the length of each call and the amount of time people use cell phones are important factors which enhance the health related risk. (1)
EWG urges the FCC to include third party-produced cases and accessories in its cell phone testing policies to ensure that they do not compromise cell phone function and do not prevent a cell phone from complying with the Commission’s exposure limits. Manufacturers should publish the radiation data for a given phone when used directly next to the body and when used with the cases most commonly sold for a specific model.
Thus far, the data from studies in children with cancer do not support this theory. The first published analysis came from a large case–control study called CEFALO, which was conducted in Denmark, Sweden, Norway, and Switzerland. The study included children who were diagnosed with brain tumors between 2004 and 2008, when their ages ranged from 7 to 19 years. Researchers did not find an association between cell phone use and brain tumor risk either by time since initiation of use, amount of use, or by the location of the tumor (21).
And don’t get me started on the immersion headgear they are coming out with for gaming. Anyway, I figured I would get a cell phone eventually and use it just as a phone, no bells and whistles. However after this article and a podcast on privacy, where I learned your cell phone is a tracking device, this goes to the towers, I’ve decided on a Definite no.
The World Health Organization (WHO) says the intensity of radio frequency (RF) radiation from cell phones decreases exponentially the further the device is held away from the body. Therefore your safest bet it keep your cell phone as far away from your ear and body as possible at all times. Don’t carry it in your pocket, tucked into a bra strap, and definitely don’t sleep with it next to your head.
Changing technology and methods of use. Older studies evaluated radiofrequency radiation exposure from analog cell phones. Today, cell phones use digital technology, which operates at a different frequency and a lower power level than analog phones. Digital cell phones have been in use for more than two decades in the United States, and cellular technology continues to change (3). Texting and other applications, for example, are common uses of cell phones that do not require bringing the phone close to the head. Furthermore, the use of hands-free technology, such as wired and wireless headsets, is increasing and may reduce exposure by distancing the phone from the body (36, 37).
×