When we think of harmful radiation, things like X-rays or gamma rays usually come to mind, but these types of radiation are different from mobile phone radiation in important ways. Radiation on the ultraviolet side of visible light, like those types just mentioned, has a wavelength that is short enough to alter some of the chemical properties of the objects it interacts with. It is referred to as ionizing radiation, for this reason. Non-ionizing radiation, which includes visible light, microwaves and radio waves, is typically regarded as harmless. Large amounts of it can produce a heating effect, like in a microwave oven, but no short-term damage has been linked to exposure to non-ionizing radiation.
That’s why randomized controlled trials (RCTs) often yield fairly clear answers about the effectiveness of treatments compared to other study designs. (Fun fact: Scottish doctor James Lind, a clinical trial pioneer, figured out that citrus fruits seemed to have an effect on scurvy using one of the earliest RCTs.) RCTs can also be used to study whether something, like cellphone radiation, can cause disease.
SAR Shield was developed using the P.A.M. SYSTEM® technology. The materials used in the construction of the SAR Shield attract and dissipate electro-magnetic waves. As radiation travels it uses up its energy. What SAR Shield does is it acts like a radiation magnet, constantly attracting the radiation towards it, therefore making it release its energy closer to the phone. This causes most of the radiation to dissapate away from the head and body. SAR Shield does not cause noticeable reduction in signal strength.

“It’s quite informative that the NTP data found evidence of an increased tumor risk in the male rats for glial cells and in the [heart] Schwann cells,” said Joel Moskowitz, director of the Center for Family and Community Health at the Berkeley School of Public Health (who writes about electromagnetic radiation here). “That’s compelling evidence that what we’re seeing in humans — even though the signal is not clear — is highly suggestive, and that there is indeed something real going on with regard to tumor risk in humans.”
There's a lot of talk in the news these days about whether or not cell phones emit enough radiation to cause adverse health effects. The concern is that cell phones are often placed close to or against the head during use, which puts the radiation in direct contact with the tissue in the head. There's evidence supporting both sides of the argument.
Hi Ty. I’m an EHS sufferer so now I try to live as free from technology as possible. My landline is connected with a cable, my router is linked to my desktop with a cable. My cell phone just does texts and calls and is switched off 99% of the time. My car is an old Skoda with no Sat Nav, no blue tooth technology and I have an earthing strap running off the rear chassis to remove the EMF’s to earth. At night I dump the power upstairs off along with the lighting circuit, I sleep on an organic mattress with no springs – so no aeril effect attracting EMFs whilst I sleep. Even the alarm clock is a wind up and with black out curtains I get the best sleep ever. Living in a mid terrace house can be a problem but Y-Sheilding both walls has blocked the majority of the neighbours harmful radiation. Guess what, no more EHS symptons.
A phone's specific absorption rate (SAR) reveals the maximum amount of radiation the human body absorbs from the phone while it's transmitting. SAR testing ensures that the devices sold in the U.S. comply with the Federal Communications Commission (FCC) SAR exposure limit, but the single, worst-case value obtained from this SAR testing is not necessarily representative of the absorption during actual use, and therefore it is not recommended for comparisons among phones. In short, selecting a lower SAR phone will not reliably ensure lower radiation absorption during use. The FCC has more information at Specific Absorption Rate (SAR) For Cell Phones: What It Means For You.
A phone's specific absorption rate (SAR) reveals the maximum amount of radiation the human body absorbs from the phone while it's transmitting. SAR testing ensures that the devices sold in the U.S. comply with the Federal Communications Commission (FCC) SAR exposure limit, but the single, worst-case value obtained from this SAR testing is not necessarily representative of the absorption during actual use, and therefore it is not recommended for comparisons among phones. In short, selecting a lower SAR phone will not reliably ensure lower radiation absorption during use. The FCC has more information at Specific Absorption Rate (SAR) For Cell Phones: What It Means For You.
RF waves from cell phones have also been shown to produce “stress” proteins in human cells, according to research from Martin Blank, Ph.D., a special lecturer in the department of physiology and cellular biophysics at Columbia University and another signer of the recent letter to the WHO and U.N. “These proteins are used for protection,” Blank says. “The cell is saying that RF is bad for me and it has to do something about it.”
Safe Cell was successfully tested by an Independent laboratory. The Shielding Effectiveness test as a cell phone radiation protection shield, was conducted by The California Institute of Material Sciences which results proved that "Safe Cell possesses Shielding Effectiveness in the cell phone test frequency range 0.800 GHz to 10.525 GHz". (click here to view the full test report)
“If you're looking for ways to limit your exposure to the electromagnetic emissions from your cell phone, know that, according to the FTC, there is no scientific proof that so-called shields significantly reduced exposure from these electromagnetic emissions. In fact, products that block only the earpiece—or another small portion of the phone—are totally ineffective because the entire phone emits electromagnetic waves. What's more, these shields may interfere with the phone's signal, cause it to draw even more power to communicate with the base station, and possibly emit more radiation.”
Researchers have carried out several types of epidemiologic studies in humans to investigate the possibility of a relationship between cell phone use and the risk of malignant (cancerous) brain tumors, such as gliomas, as well as benign (noncancerous) tumors, such as acoustic neuroma (tumors in the cells of the nerve responsible for hearing that are also known as vestibular schwannomas), meningiomas (usually benign tumors in the membranes that cover and protect the brain and spinal cord), and parotid gland tumors (tumors in the salivary glands) (3).
×