Dr Devra Davis is an internationally recognised expert on electromagnetic radiation from mobile phones and other wireless transmitting devices. She is currently the Visiting Professor of Medicine at the Hebrew University Hadassah Medical School, and Visiting Professor of Medicine at Ondokuz Mayis University, Turkey. Dr Davis was Founding Director of the Center for Environmental Oncology at The University of Pittsburgh Cancer Institute —­ the first institute of its kind in the world, to examine the environmental factors that contribute to the majority of cases of cancer.
It'd be wrong to say that there is no evidence of harm at all. In fact, the re-classification by the IARC came about in the first place because the Working Group contributing to the Interphone study acknowledged "limited evidence" of an increase in glioma (a type of tumour, commonly found in the brain) among phone users in one of the studies. In this study, which concluded in 2004, researchers found that participating phone owners who had used their handsets for calls for more than 30-minutes a day, over a period of ten years, had an increase incidence of glioma.

Independently tested DefenderShield® technology uses a patent-pending sophisticated layering of separate non-toxic, human safe exotic materials processed for maximum radiation blocking efficiency. Each material has unique and targeted radiation shielding characteristics designed to work in unison to up to eliminate all radiation emissions from 0 to 10 GHz.
The Stewart report recommended that children should only use mobile phones in emergencies. The recommendation was based on the theory that children could be more at risk from the radiowaves emitted by mobile phones. This is because their brains are still developing and their skulls are thinner, making it easier for the radiowaves to penetrate them. Also if they start using mobiles at a young age, their cumulative lifetime use will be higher than adults. According to the Advisory Group on Non-Ionising Radiation, “little has been published specifically on childhood exposures” since 2000. As a result, children are still advised only to use mobile phones in emergencies. However, surveys suggest that many children are ignoring the advice. A survey of 1,000 British children, carried out in 2001, found 90% of under-16s own a mobile and one in 10 spends more than 45 minutes a day using it.

Dr. Carlo, however, refused to be an easy target. He quickly recruited a group of prominent scientists to work with him, bulletproof experts owning long lists of credentials and reputations that would negate any perception that the research was predestined to be a sham. He also created a Peer Review Board chaired by Harvard University School of Public Health’s Dr. John Graham, something that made FDA officials more comfortable since, at the time, the agency was making negative headlines due to the breast implant controversy. In total, more than 200 doctors and scientists were involved in the project.
In the US, a small number of personal injury lawsuits have been filed by individuals against cellphone manufacturers (including Motorola,[28] NEC, Siemens, and Nokia) on the basis of allegations of causation of brain cancer and death. In US federal courts, expert testimony relating to science must be first evaluated by a judge, in a Daubert hearing, to be relevant and valid before it is admissible as evidence. In a 2002 case against Motorola, the plaintiffs alleged that the use of wireless handheld telephones could cause brain cancer and that the use of Motorola phones caused one plaintiff's cancer. The judge ruled that no sufficiently reliable and relevant scientific evidence in support of either general or specific causation was proffered by the plaintiffs, accepted a motion to exclude the testimony of the plaintiffs' experts, and denied a motion to exclude the testimony of the defendants' experts.[29]
Manufacturers conduct government-required certification tests using a bare phone, set to transmit at maximum power, with no accessories. The recorded maximum SAR is reported to the FCC and listed in the phone’s manual. A phone tested with accessories under the same conditions can produce a higher SAR because the materials surrounding the antenna can affect the amount of radiation that reaches and is absorbed by the user’s body. A case can influence both the overall amount of emitted radiation and how it is directed.
One of the many advantages of TI22 is that after applying TI22 to your device it will have an invisible layer that will protect your device from harmful EMF radiation scratches and scuffs for up to one year. This layer reaches the full hardness of 9H on the Mohs scale of mineral hardness, which is a scale that characterizes scratch resistance, and is similar to Sapphire, Ruby or Corundum. Its almost as hard as a Diamond.
This is a 2 pieces of plastic sandwiched together by glue. Don't believe me? Take it apart. This item works no better than the existing case on your phone. If you are that concerned with cellphone radiation, you should be equally concerned about the cheap plastic and toxic glue that this is comprised of. Also know the fact that they've stolen $25 from your wallet when you purchase this hokey product...Technology at it's finest.
The base station is equipped with antennas for reception and transmission. In order to communicate, the mobile phones and the antennas at the base station emit radiowave radiation (see below). The mobile phone instrument transmits a lower amount of radiation than the one transmitted by the transmission center (cell site), but because the instrument is near the body, the body directly absorbs the energy from the instrument’s antenna.

Wherever you come out on the cellphone and cancer question, one thing is clear: How we live with cellphones, along with our exposure to the radiation they emit, has changed dramatically over the past several decades. That has policy implications; it’s something regulators, researchers, and cellphone companies need to pay attention to. In that context, a few things should happen:

Changing technology and methods of use. Older studies evaluated radiofrequency radiation exposure from analog cell phones. Today, cell phones use digital technology, which operates at a different frequency and a lower power level than analog phones. Digital cell phones have been in use for more than two decades in the United States, and cellular technology continues to change (3). Texting and other applications, for example, are common uses of cell phones that do not require bringing the phone close to the head. Furthermore, the use of hands-free technology, such as wired and wireless headsets, is increasing and may reduce exposure by distancing the phone from the body (36, 37).

The first one is easy, cellular frequencies vary between 450–2000MHz, but 800 or 900 MHz is the most common. The power emitted by a cell phone varies over the course of the call (higher when making initial contact, which lasts a few seconds). It can go up to 2 Watts at the start of a call, and can go down to .02 Watts during optimal operation [2]. Of course, most people barely use cell phones for calls, but I am using this example as a worst case scenario, because the phone is not right by your head when you are browsing Tinder.

Initially leaked in 2016, results from that $25-million study provided the most compelling evidence yet that RF energy may be linked to cancer in lab rodents. The strongest finding connected RF with heart schwannomas in male rats, but the researchers also reported elevated rates of lymphoma as well as cancers affecting the prostate, skin, lung, liver and brain in the exposed animals. Rates for those cancers increased as the doses got higher but the evidence linking them with cell phone radiation specifically was weak by comparison, and the researchers could not rule out that they might have increased for reasons other than RF exposure. Paradoxically, the radiation-treated animals also lived longer than the nonexposed controls. The study results were reviewed by a panel of outside experts during a three-day meeting that ended on March 28. They concluded there was "clear evidence" linking RF radiation with heart schwannomas and "some evidence" linking it to gliomas of the brain. It is now up to the NTP to either accept or reject the reviewer's conclusions. A final report is expected within several months.

They determined there is “clear evidence” that male rats exposed to high levels of radio frequency radiation — typical of 2G and 3G networks when the study was designed — developed heart schwannomas. There was also “some evidence” of brain and adrenal gland tumors, again in the male rats, but the exposed female rats, and male and female mice, did not have consistent patterns of disease.

SafeSleeve's report is right up front about showing that they do not test or certify the Safe Sleeve case, rather they are simply testing the material they put into the case in a completely artificial environment, in a laboratory setting, using a signal generator and a power amplifier. Safe Sleeve includes photos showing how the measurements are taken. But that may not be how anyone will ever use their phone.
To answer this question, Lloyd uses an analogy of “smoke and a chimney” to explain how a Pong case works.  It is unfortunate — given Lloyd’s personal experience with electrohypersensitivity and his straightforward knowledge of how to measure RF exposure — that pure “smoke and mirrors” clouded his better judgement when reviewing the Pong case for cell phone radiation safety.
Designed to be “leaky”, it permits only a fraction of the RF radiation to penetrate. Exposure to people is reduced (typically 90-99% reduction), and the device usually still works, but with a more limited range. Great for when you permanently or temporarily want to quiet microwave levels without fully turning off the source. Place it over cellphones, cordless phones, two-way radios, smart devices, even wifi routers. Sturdy metal. The two larger units have convenient handle and access holes for wire and cable pass through. Pick the sizes which meet your needs.

I debated whether to give it 3 or 4 stars: on features, speed of delivery, and quality of construction, it definitely deserves 4 stars. If I can measure and verify the emf reduction, then I will change the rating to 5 stars. Since the whole point of using it is to block excess em radiation, I can't really give it 5 stars without more proof that it really does so.
It’s true that cellphones do emit radiation. And radiation is a scary word for a lot of people, thanks in part to the horrific aftermath of nuclear accidents and photographs of victims of the nuclear bombs the US dropped on Japan in World War II. People hear radiation and they associate it with nuclear radiation and the bomb, says Geoffrey Kabat, a cancer epidemiologist at the Albert Einstein College of Medicine and author of the book Getting Risk Right. “There are all these associations and those are deeply ingrained in people. But it doesn’t apply here.”
Stephen Chanock, who directs the Division of Cancer Epidemiology and Genetics at the National Cancer Institute, remains skeptical, however. Cancer monitoring by the institute and other organizations has yet to show increasing numbers of brain tumors in the general population, he says. Tracking of benign brain tumors, such as acoustic neuromas, was initiated in 2004 by investigators at the institute’s Surveillance, Epidemiology and End Results program, which monitors and publishes statistics on cancer incidence rates. According to Chanock’s spokesperson, the acoustic neuroma data “haven’t accumulated to the point that we can say something meaningful about them.”
The NTP studied radiofrequency radiation (2G and 3G frequencies) in rats and mice (33, 34). This large project was conducted in highly specialized labs that specified and controlled sources of radiation and measured their effects. The rodents experienced whole-body exposures of 3, 6, or 9 watts per kilogram of body weight for 5 or 7 days per week for 18 hours per day in cycles of 10 minutes on, 10 minutes off. A research overview of the rodent studies, with links to the peer-review summary, is available on NTP website. The primary outcomes observed were a small number of cancers of Schwann cells in the heart and non-cancerous changes (hyperplasia) in the same tissues for male rats, but not female rats, nor in mice overall.