EWG urges the FCC to include third party-produced cases and accessories in its cell phone testing policies to ensure that they do not compromise cell phone function and do not prevent a cell phone from complying with the Commission’s exposure limits. Manufacturers should publish the radiation data for a given phone when used directly next to the body and when used with the cases most commonly sold for a specific model.

Specific Absorption Rate is an indicator of how much EMF radiation body tissue absorbs when you’re using a cell phone and is one way to measure and compare the harm of different devices. In this article, I wanted to provide a resource to compare and contrast the SAR levels of many popular phones and talk a bit about what Specific Absorption Rate is, and how we can use it.


The reason we’re talking about cellphones and cancer — why there’s a concern here — is because they emit radiation, the invisible waves of electric and magnetic energy, of varying power, organized on the electromagnetic spectrum. You can see in the graphic below that less powerful (or lower-frequency) types of radiation are on the left, moving to the more powerful (or higher-frequency) types of radiation on the right.

The electromagnetic spectrum is broken up into two parts based on whether small doses of that radiation can cause harm: ionizing radiation and non-ionizing radiation. Ionizing radiation—UV, x-rays, and gamma rays—has enough energy in one photon (quantized minimum packet of light) to remove electrons from atoms or break apart chemical bonds. It is because of this potential for cancer-causing DNA damage that you wear a lead vest when you get x-rays at the dentist and you are advised to wear sunblock when you go out in the sun. One can’t avoid natural (radon, cosmic rays when you are up in an airplane) and man made (diagnostic x-rays) sources of ionizing radiation completely, but it is reasonable advice to minimize exposure when possible.


The only consistently recognized biological effect of radiofrequency radiation in humans is heating. The ability of microwave ovens to heat food is one example of this effect of radiofrequency radiation. Radiofrequency exposure from cell phone use does cause heating to the area of the body where a cell phone or other device is held (e.g., the ear and head). However, it is not sufficient to measurably increase body temperature. There are no other clearly established effects on the human body from radiofrequency radiation.
×