So what do you do when you need a wireless radiation emitting device but you want to limit the exposure to the people? Perhaps you use a wireless baby monitor, have a cordless phone base station, or you sleep with your cell phone on your nightstand. Maybe there is a wifi router right next to you at work or school. RadiaFence is the answer. It’s a free-standing, semi-transparent microwave barrier that you can put almost anywhere you need. It blocks most of the radiation emitted in one direction by “casting a shadow” (typically 70-90% reduction), while still allowing the wireless device to work. Like sitting in the shade on a sunny day. Portable, inexpensive, attractive. And it couldn’t be easier to use. If you like, you can add a decorative photo or warning sign to change the appearance. Available in 5 styles. Pick the sizes which meet your needs. Style may differ from images. 

The guidelines recommend keeping phones away from the body when they’re not in use—in a backpack, for example, rather than a pocket—and sleeping with phones away from the bed. People may also choose to use speakerphone or a headset to make calls, rather than holding the phone to their heads. (They should remove their headsets when they’re not in use, though, as these devices also emit small amounts of RF frequency.)
None of the three cases contain metallic parts, which are known to affect SAR, but all increased the user’s radiation exposure. The effect on radiation exposure would likely vary with each of the hundreds of cases on the market, and each would have to be tested individually to come up with an exact measure. The results in Table 1, however, are believed to reflect the range of radiation increases.

The researchers found other strange effects that muddied the interpretation of the studies: The rats exposed to cellphones seemed to outlive the rats in the control group, for example. There was no clear linear relationship between higher levels of cellphone exposure and more cancer at some tissue sites, and the cancer rate in the control group was lower than it should have been at other tissue sites.
*SAR values are from tests conducted by Pong Research Corp on March 29, 2012 and submitted to the FCC on May 31, 2012. Because the SAR values were submitted to the FCC in graph form, EWG estimated numerical SAR values based on the chart available in WT Docket 11-186 (http://apps.fcc.gov/ecfs/document/view?id=7021921006). Pong’s filing to the FCC did not indicate whether SAR measurements were done at the head or in a body-worn configuration. In a personal communication, Pong informed EWG that the SAR measurements were done in a body-worn configuration, with the same distance from the test mannequin used by the phone manufacturer. Tests in the body-worn configuration were done at a 10 millimeter separation distance.
Cables can act as an antenna, especially if they pass close to a strong source of radiofrequency radiation. One study has suggested that if the cable of a hands free mic passes near the phone's antenna, it can pick up some radiation and transmit it to your ear. Our ferrite snap bead is designed to reduce RF radiation in the cable. Made in 2 halves, you simply press it around the hands free wire at any convenient location near the earpiece end. Couldn't be simpler. It is small and lightweight enough to be almost unnoticable, yet powerful enough (50 ohm impedence minimum) to control nasty radiation. These are brand new, top quality and will accommodate wires up to 5 mm (3/16 inch) in diameter. About 1 inch long, grey color. If you are concerned about radiation from your hands free ear mic, this is the answer. Useful from 200-1000 MHz.
Did you watch any of the videos? A healthy amount of skepticism is appropriate but be careful about just being a Debbie Downer. Admittedly, you haven’t tried all the products and probably aren’t even familiar with them yet quickly offer blanket assessments that it’s all marketing hype perpetuated by an evil Monopoly-man looking guy who just wants to take your money and snicker about what a sucker you are. Good luck with that.
As a good thing to keep in mind, there are hundreds of thousands of people suffering from EHS in the world. Some of them live in forests, tents, and anywhere they can get away from society and EMFs because their symptoms are so bad when exposed. I have not heard one single EHS person claim that any of these types of devices work. They sure don’t for me. Most EHS sufferers are so desperate that they have researched and tried just about everything. Getting away from EMFs, or blocking them with material that does actually block them, like as a Faraday cage, is what works. And this is clearly what the scientific evidence shows. If these devices worked, that would be fabulous. One could spend $100 and be well, instead of having their life turned upside down, and in the worst cases as with some, committing suicide due to complete hopelessness and helplessness.. However, that is not the case. To further prove whether they work or not, one could wear one, and measure with a meter designed to measure EMF absorption in the body (they exist now). Has the manufacturer had this done, and is their evidence of it? An EHS person can tell without a meter anyway, but to prove to others, this might be a good idea.

When you need to get further from your headset, this extension does the trick. Three feet long, white, and very light weight. Has standard iPhone 3.5 mm, 3 band plug and socket. Simply plug one end into your iPhone, and plug your headset into the other end. You can daisy chain up to 4 extensions to get a total length of 12 feet if you need it! Available in black or white.


In 2007, Dr Devra Davis founded non­profit Environmental Health Trust to provide basic research and education about environmental health hazards. Dr Davis served as the President Clinton appointee to the Chemical Safety and Hazard Investigation Board in the U.S.A. from 1994–­1999, an independent executive branch agency that investigates, prevents and mitigates chemical accidents.

Many respected scientists join them. “We found no evidence of an increased risk of brain tumors or any other form of cancer” from cell-phone radiation, says John Boice Jr., Sc.D., president of the National Council on Radiation Protection & Measurements and a professor of medicine at the Vanderbilt University School of Medicine in Nashville, Tenn. “The worry should instead be in talking or texting with your cell phone while driving.”

Use the speaker mode on the phone or a hands-free device such as a corded or cordless earpiece. This moves the antenna away from your head, which decreases the amount of RF waves that reach the head. Corded earpieces emit virtually no RF waves (although the phone itself still emits small amounts of RF waves that can reach parts of the body if close enough, such as on the waist or in a pocket). Bluetooth® earpieces have an SAR value of around 0.001 watts/kg (less than one thousandth the SAR limit for cell phones as set by the FDA and FCC).


There is some concern that my iphone was working even when turned off, as it would somehow use the battery over the coarse of a few months of being turned off. So long as it isn’t government mandated that we not interfere with their ability to find our phone when they want, I want to make sure they can’t. Yes they can argue only a terrorist would want that. But I’m no terrorist and I want that because like millions of Americans, I dislike the idea of Big Brother constantly keeping digital tabs on me.
So what do you do when you need a wireless radiation emitting device but you want to limit the exposure to the people? Perhaps you use a wireless baby monitor, have a cordless phone base station, or you sleep with your cell phone on your nightstand. Maybe there is a wifi router right next to you at work or school. RadiaFence is the answer. It’s a free-standing, semi-transparent microwave barrier that you can put almost anywhere you need. It blocks most of the radiation emitted in one direction by “casting a shadow” (typically 70-90% reduction), while still allowing the wireless device to work. Like sitting in the shade on a sunny day. Portable, inexpensive, attractive. And it couldn’t be easier to use. If you like, you can add a decorative photo or warning sign to change the appearance. Available in 5 styles. Pick the sizes which meet your needs. Style may differ from images. 

So you are careful about NOT putting your radiation emitting mobile near your head. That’s good. But think about this: what body parts get the radiation when you put the thing on your pocket, bra, hat, purse, holster or elsewhere on your body? Now your vital and sometimes private organs are basically in contact with the source of the microwaves, getting the largest dose possible. Pocket Sticker is a high performance shielding patch that you stick onto your clothing which reflects that radiation away from your body.
Using a speaker/personal speakerphone or earplug (not wireless) during conversation - distancing the mobile phone from the user’s body reduces his exposure to the radiowave radiation. Therefore, keep the mobile phone at a distance from the body (do not carry it on the body, such as in the belt, pocket or on a neck strap). Obviously, reducing the amount and duration of calls on the mobile phone is another simple measure to reduce exposure.
Only 0.010 inch thick, PaperSHIELD is flexible and can be easily cut with a scissors and shaped by hand into simple or very complex shapes. High saturation and moderate permeability make this ideal for shielding weak magnets, or stronger magnets with many layers of shielding. This material is particularly suited for achieving precise levels of partial shielding as you can add exactly the right number of layers to achieve the desired result. White paper on one side can be imprinted (by you). Peel and stick adhesive on the other side permits easy and semi-permanent mounting almost anywhere. Magnets will stick to it nicely.
Moving the meter around the case, we detect readings on the side, back and front of the case. We use the multi-directional TES 593 meter which measures 10 MHz to 8GHz. We use the unit of micro-watts per square centimeter, which looks like this little symbol: μW/cm² and we use it on the max setting which shows the maximum measured value. In non-science speak: the highest level of RF we see, which could be from the back the side or the front. 

In addition, cellphones potentially harm our health in ways that have nothing to do with cancer. The effect on sperm is concerning to Moskowitz, the director of the Center for Family and Community Health at the Berkeley School of Public Health, and he noted that our current cellphone regulations also don’t account for these potential effects. Plus, we still don’t know what steady exposure to this kind of radiation from devices means for kids.


Independently tested DefenderShield technology uses a patent-pending sophisticated layering of separate non-toxic, human safe materials processed for maximum radiation blocking efficiency. Each material has unique and targeted radiation shielding characteristics designed to work in unison to up to eliminate all radiation emissions from 0 to 10 GHz.

I don't know why, but I recently had a concern about the fact I keep my smartphone in my pocket for a good part of the day. Was this a "smart" idea, or was there a potential problem with phone radiation? To address this concern, I searched for answers on the Internet. There were a lot of contraptions, many of which seemed to be too good to be true. The one that looked the most promising was Blocsock, not cheap at $24 for the high-end model with the pouch, but it did say it blocked 96% of the cell phone radiation from your body by having special radiation-blocking material on one side, with the side facing away from your body regular material so the phone could still communicate with the outside world. Cheap eBay knockoffs had material on both sides, meaning when you put your phone in them, your phone could't communicate with the outside world! Others did not have the testing results that assured how well the blocking material worked. There is a very detailed SAR test report validating the Blocsock, which I found at sustainablemobile.com. You can Google it. It is a very exhaustive testing report!
First, you must have a proper meter. To check for magnetic field emissions, an AC Gaussmeter will work. Most AC gaussmeters will have an internal probe. Simply position the gaussmeter on the phone. Note carefully where the meter is positioned. Make a call and watch the readings. Notice the highest and lowest readings, and make a mental note of the "average" reading. Now, insert the magnetic shield, and repeat.
Note: Although it is true that cell phones emit low frequency magnetic fields that can be measured in milliGauss, they also emit high frequency microwave radiation which is what all the concern (and publicity) is about, and which the products below are designed to shield. Many clients have contacted us seeking a shield for BOTH magnetic fields and microwaves for their phone. Such a shield does not currently exist. To reduce your exposure to BOTH types of radiation, use an airtube headset and keep the phone itself at a distance.
SafeSleeve's report is right up front about showing that they do not test or certify the Safe Sleeve case, rather they are simply testing the material they put into the case in a completely artificial environment, in a laboratory setting, using a signal generator and a power amplifier. Safe Sleeve includes photos showing how the measurements are taken. But that may not be how anyone will ever use their phone.
There are fears that the electromagnetic radiation emitted from mobile phone handsets may harm health. In particular, there have been claims that it could affect the body’s cells, brain or immune system and increase the risk of developing a range of diseases from cancer to Alzheimer’s. Laboratory tests on mice have shown that radiation from mobile phones can have an adverse effect on their overall health. It is still not clear whether those findings can be applied directly to humans. A study by scientists in Finland, published in 2002, suggested that the electromagnetic radiation did affect human brain tissue. But they played down their findings saying more research was needed to see if the effects were the same in living people. Another study by scientists in Sweden, also published in 2002, claimed to have found a link between analogue mobile phones and brain tumours. It suggested users of “first generation” phones had a 30% higher risk of developing tumours than people who did not. However, the findings were controversial and there have been no similar studies into the effects of modern GSM phones. There have also been reports of people suffering from headaches, fatigue and loss of concentration after using their mobile phones. However, these claims have not been scientifically substantiated.
“If you're looking for ways to limit your exposure to the electromagnetic emissions from your cell phone, know that, according to the FTC, there is no scientific proof that so-called shields significantly reduced exposure from these electromagnetic emissions. In fact, products that block only the earpiece—or another small portion of the phone—are totally ineffective because the entire phone emits electromagnetic waves. What's more, these shields may interfere with the phone's signal, cause it to draw even more power to communicate with the base station, and possibly emit more radiation.”
Recall bias, which can occur when data about prior habits and exposures are collected from study participants using questionnaires administered after diagnosis of a disease in some of the participants. It is possible that study participants who have brain tumors may remember their cell phone use differently from individuals without brain tumors. Many epidemiologic studies of cell phone use and brain cancer risk lack verifiable data about the total amount of cell phone use over time. In addition, people who develop a brain tumor may have a tendency to recall cell phone use mostly on the same side of the head where their tumor was found, regardless of whether they actually used their phone on that side of the head a lot or only a little.
×