Thanks for reading the fine print. About the Wiki: We don't accept sponsorships, free goods, samples, promotional products, or other benefits from any of the product brands featured on this page, except in cases where those brands are manufactured by the retailer to which we are linking. For our full ranking methodology, please read about us, linked below. The Wiki is a participant in associate programs from Amazon, Walmart, Ebay, Target, and others, and may earn advertising fees when you use our links to these websites. These fees will not increase your purchase price, which will be the same as any direct visitor to the merchant’s website. If you believe that your product should be included in this review, you may contact us, but we cannot guarantee a response, even if you send us flowers.
Can cellphone radiation cause cancer in humans? There’s no scientific consensus on this issue, but there is “some evidence” that exposure to radiation equivalent to that emanating from 1990s-era cellphones is associated with brain tumors in male rats, according to results of a US National Toxicology Program (NTP) study released last week (November 1). 

Can cellphone radiation cause cancer in humans? There’s no scientific consensus on this issue, but there is “some evidence” that exposure to radiation equivalent to that emanating from 1990s-era cellphones is associated with brain tumors in male rats, according to results of a US National Toxicology Program (NTP) study released last week (November 1). 
While the Federal Communication Commission limits how much radiofrequency radiation can come out of your cellphone, the Food and Drug Administration can have a say about whether those limits are safe. So the FDA asked the National Toxicology Program (NTP), a division within the National Institutes of Health, to investigate. Based on the NTP’s results, as well as hundreds of other studies, the FDA is still confident that the current limits on cellphone radiation are safe, according to a statement from Jeffrey Shuren, the director of the FDA’s Center for Devices and Radiological Health.
Cell-phone designs have changed a lot since the studies described above were completed. For example, the antennas—where most of the radiation from cell phones is emitted—are no longer located outside of phones near the top, closest to your brain when you talk, but are inside the phone, and they can be toward the bottom. As a result, the antenna may not be held against your head when you’re on the phone. That’s important because when it comes to cell-phone radiation, every milli­meter counts: The strength of exposure drops dramatically as the distance from your body increases.
The U.S. Food and Drug Administration (FDA) notes that studies reporting biological changes associated with radiofrequency radiation have failed to be replicated and that the majority of human epidemiologic studies have failed to show a relationship between exposure to radiofrequency radiation from cell phones and health problems. The FDA, which originally nominated this exposure for review by the NTP in 1999, issued a statement on the draft NTP reports released in February 2018, saying “based on this current information, we believe the current safety limits for cell phones are acceptable for protecting the public health.” FDA and the Federal Communications Commission share responsibility for regulating cell phone technologies.
It’s easy to call any case a product designed to block smartphone radiation.  What you need to look for is credible, quantifiable claims that highlight a case’s ability to reduce your exposure to the harmful radiation. Look for relevant  certifications from credible organizations (such as FCC accredited laboratories) that will vouch for product claims, and read product reviews online.

By not formally reassessing its current limit, FCC cannot ensure it is using a limit that reflects the latest research on RF energy exposure. FCC has also not reassessed its testing requirements to ensure that they identify the maximum RF energy exposure a user could experience. Some consumers may use mobile phones against the body, which FCC does not currently test, and could result in RF energy exposure higher than the FCC limit.
“Epidemiological studies are targets for fixing the outcome because they’re observational in nature instead of experimental,” Dr. Carlo explains. “It’s possible to design studies with pre-determined outcomesthat still fall within the range of acceptable science. Thus, even highly flawed epidemiological studies can be published in peer-reviewed journals because they’re judged against a pragmatic set of standards that assume the highest integrity among the investigators.”
Four years ago -- before I bought my first iPhone -- I wouldn’t buy certain model cell phones because their radiation emission levels were too high. I became obsessed with researching this in the buying process, especially after finding out that a man I knew died of brain cancer and was an early mobile phone user. Suspicion was that the phone caused the cancer.
“I think the overall evidence that wireless radiation might cause adverse health effects is now strong enough that it’s almost unjustifiable for government agencies and scientists not to be alerting the public to the potential hazards,” says David O. Carpenter, M.D., director of the Institute for Health and the Environment at the University at Albany in New York and one of the authors of the recent letter to the U.N. and WHO.
Read the “fine print” from the manufacturer’s instruction manual which tells users to put a distance between the phone and your head and body. These fine print warnings range  from a few millimeters to almost an inch. The fine print warnings on other wireless devices (such as Wi-Fi routers, wireless printers, home cordless phone base stations and baby monitors) generally state the distance should be at least 20 cm, or about 8 inches. If people are closer than the manufacturer stated separation distance, then they can be exposed to RF levels that violate the US government FCC limits for this radiation.

Open the “Step 2” packet and remove the cloth and rub the glass surface with the Ti22 Liquid Titanium Shield Nano liquid treated wipe which will coat the surface with the protective Nano liquid. The liquid needs to be applied for at least 90 seconds rubbing every part of the glass. Pushing gently into the glass to absorb the advanced formula. You can also use your finger to rub the liquid into the glass and don’t forget to apply to the camera lens and back-glass if you have a glass back. Allow the Ti22 Liquid Titanium Shield liquid to dry for at least 60-90 seconds before handling. Wash your hands carefully after the treatment.

Use the speaker mode on the phone or a hands-free device such as a corded or cordless earpiece. This moves the antenna away from your head, which decreases the amount of RF waves that reach the head. Corded earpieces emit virtually no RF waves (although the phone itself still emits small amounts of RF waves that can reach parts of the body if close enough, such as on the waist or in a pocket). Bluetooth® earpieces have an SAR value of around 0.001 watts/kg (less than one thousandth the SAR limit for cell phones as set by the FDA and FCC).
“This means we’re on the beginning curve of an epidemic, with epidemic defined as a change in the occurrence of a disease that is so dramatic in its increase that it portends serious public health consequences,” says Dr. Carlo. “This is what’s not being told to the public. One of the things that I suggest to people who use a cell phone is to use an air tube headset. If you use a wired headset, the current moving through the wire of the headset attracts ambient informational carrying radio waves and thereby increases your exposure.”
Dr Devra Davis is an internationally recognised expert on electromagnetic radiation from mobile phones and other wireless transmitting devices. She is currently the Visiting Professor of Medicine at the Hebrew University Hadassah Medical School, and Visiting Professor of Medicine at Ondokuz Mayis University, Turkey. Dr Davis was Founding Director of the Center for Environmental Oncology at The University of Pittsburgh Cancer Institute —­ the first institute of its kind in the world, to examine the environmental factors that contribute to the majority of cases of cancer.
EMF’s? Most everyone has grown up with EMF’s. It is not so much in your wifi as it is in your homes wiring. Check your walls and plugs with a meter. Also, every modern car is off the charts with EMF. Way I see it, people are living just fine. My grandmother is 86, living under power lines and house full of EMF electric wiring. She is fine. Unless I see 50% of the population dying early and having serious, serious issues, I will not panic over EMF’s
Epidemiology studies investigating cell phone use patterns with human cancer risk have produced inconsistent results. Some studies enrolled people who already had tumors with suspected links to RF radiation, such as gliomas, acoustic neuromas and salivary gland tumors. Researchers compared the self-reported cell phone use habits of the cancer patients with those of other people who did not have the same diseases. Other studies enrolled people while they were still healthy, and then followed them over time to see if new cancer diagnoses tracked with how they used cell phones. All the epidemiology studies, however, have troubling limitations, including that enrolled subjects often do not report their cell phone use habits accurately on questionnaires.
The International Agency for Research on Cancer (IARC) is part of the World Health Organization (WHO). Its major goal is to identify causes of cancer. The IARC has classified RF fields as “possibly carcinogenic to humans,” based on limited evidence of a possible increase in risk for brain tumors among cell phone users, and inadequate evidence for other types of cancer. (For more information on the IARC classification system, see Known and Probable Human Carcinogens.)
In 2011, the American Cancer Society (ACS) stated that the IARC classification means that there could be some cancer risk associated with radiofrequency radiation, but the evidence is not strong enough to be considered causal and needs to be investigated further. Individuals who are concerned about radiofrequency radiation exposure can limit their exposure, including using an ear piece and limiting cell phone use, particularly among children.
Just why Schwann and glial cells appear to be targets of cell phone radiation is not clear. David Carpenter, a physician who directs the Institute for Health and the Environment at the University at Albany, S.U.N.Y., explained the purpose of these cells is to insulate nerve fibers throughout the body. These are electrical systems, so that may be some sort of factor, he wrote in an e-mail. “But this is only speculation.”
These cases work by redirecting the electromagnetic radiation (EMR) that is produced by phones, away from the user. All phones produce EMR when connected to the mobile network, and the effect of this energy is measured as a Specific Absorption Rate, or SAR: a measurement describing the radiation absorbed by kilogram of tissue. Government regulations in Australia dictate that all phones in Australia must emit a SAR less than 2 W/kg under the worst case scenario, and while all phones comply, most modern phones emit, at most, only half of this safe level, or approximately 1 W/kg.
In addition, the findings might be influenced by the fact that the study subjects owned cell phones that were in some cases manufactured two decades ago. The way we use cell phones and the networks they’re operated on have also changed since then. Last, cancer can develop slowly over decades, yet the studies have analyzed data over only about a five- to 20-year span.
Participation bias, which can happen when people who are diagnosed with brain tumors are more likely than healthy people (known as controls) to enroll in a research study. Also, controls who did not or rarely used cell phones were less likely to participate in the Interphone study than controls who used cell phones regularly. For example, the Interphone study reported participation rates of 78% for meningioma patients (range among the individual studies 56–92%), 64% for glioma patients (range 36–92%), and 53% for control subjects (range 42–74%) (6).