But, dear reader, don’t think we’ve reached a “case closed” moment: Unfortunately, even the best evidence on cellphones and brain tumors is far from ideal. Remember, these cohort studies are still observational research — not experimental studies like RCTs. That means they can’t tell us about causation, and there are still many ways they could be biased.

An analysis of data from NCI's Surveillance, Epidemiology, and End Results (SEER) Program evaluated trends in cancer incidence in the United States. This analysis found no increase in the incidence of brain or other central nervous system cancers between 1992 and 2006, despite the dramatic increase in cell phone use in this country during that time (22).
As our video points out: Measurements will vary with signal strength and other factors and that includes ambient energy. I talk about ambient energy in a lot of my videos-it's the energy that's in whatever environment I happen to be measuring in that's coming from a source of wireless energy that isn't the subject of what I'm measuring.  My home is not a lab of course, but fortunately it's always measured very low for RF radiation. 
The World Health Organization states that "A large number of studies have been performed over the last two decades to assess whether mobile phones pose a potential health risk. To date, no adverse health effects have been established as being caused by mobile phone use."[2] In a 2018 statement, the FDA said that "the current safety limits are set to include a 50-fold safety margin from observed effects of radiofrequency energy exposure".[3]
Some scientists have reported that the RF waves from cell phones produce effects in human cells (in lab dishes) that might possibly help tumors grow. However, several studies in rats and mice have looked at whether RF energy might promote the development of tumors caused by other known carcinogens (cancer-causing agents). These studies did not find evidence of tumor promotion.
If you're looking for ways to limit your exposure to the electromagnetic emissions from your cell phone, know that, according to the FTC, there is no scientific proof that so-called shields significantly reduce exposure from these electromagnetic emissions. In fact, products that block only the earpiece – or another small portion of the phone – are totally ineffective because the entire phone emits electromagnetic waves. What's more, these shields may interfere with the phone's signal, cause it to draw even more power to communicate with the base station, and possibly emit more radiation.
None of the three cases contain metallic parts, which are known to affect SAR, but all increased the user’s radiation exposure. The effect on radiation exposure would likely vary with each of the hundreds of cases on the market, and each would have to be tested individually to come up with an exact measure. The results in Table 1, however, are believed to reflect the range of radiation increases.
When we think of harmful radiation, things like X-rays or gamma rays usually come to mind, but these types of radiation are different from mobile phone radiation in important ways. Radiation on the ultraviolet side of visible light, like those types just mentioned, has a wavelength that is short enough to alter some of the chemical properties of the objects it interacts with. It is referred to as ionizing radiation, for this reason. Non-ionizing radiation, which includes visible light, microwaves and radio waves, is typically regarded as harmless. Large amounts of it can produce a heating effect, like in a microwave oven, but no short-term damage has been linked to exposure to non-ionizing radiation.
A recent large study by the US National Toxicology Program (NTP) exposed large groups of lab rats and mice to RF energy over their entire bodies for about 9 hours a day, starting before birth and continuing for up to 2 years (which is the equivalent of about 70 years for humans, according to NTP scientists). The study found an increased risk of tumors called malignant schwannomas of the heart in male rats exposed to RF radiation, as well as possible increased risks of certain types of tumors in the brain and adrenal glands. But some aspects of this study make it hard to know just how well these results might be applied to cell phone use in people. For example, there was no clear increased risk among female rats or among male or female mice in the study. The doses of RF radiation in the study were also generally higher than those used in cell phones (ranging from 1.5 W/kg to 6 W/kg in rats, and 2.5 W/kg to 10 W/kg in mice), the animals’ entire bodies were exposed, and the amount of time they were exposed was longer than most people typically spend on the phone each day. The male rats in the study exposed to RF waves also lived longer, on average, than the rats who were not exposed, for unclear reasons. Because of this, the NTP has noted that the study results cannot be directly applied to humans. Still, the results add to the evidence that cell phone signals might potentially impact human health.
The authors of these studies noted that the results were preliminary and that possible health outcomes from changes in glucose metabolism in humans were unknown. Such inconsistent findings are not uncommon in experimental studies of the biological effects of radiofrequency electromagnetic radiation in people (4). Some factors that can contribute to inconsistencies across such studies include assumptions used to estimate doses, failure to consider temperature effects, and lack of blinding of investigators to exposure status.
Cables can act as an antenna, especially if they pass close to a strong source of radiofrequency radiation. One study has suggested that if the cable of a hands free mic passes near the phone's antenna, it can pick up some radiation and transmit it to your ear. Our ferrite snap bead is designed to reduce RF radiation in the cable. Made in 2 halves, you simply press it around the hands free wire at any convenient location near the earpiece end. Couldn't be simpler. It is small and lightweight enough to be almost unnoticable, yet powerful enough (50 ohm impedence minimum) to control nasty radiation. These are brand new, top quality and will accommodate wires up to 5 mm (3/16 inch) in diameter. About 1 inch long, grey color. If you are concerned about radiation from your hands free ear mic, this is the answer. Useful from 200-1000 MHz.
The energy of electromagnetic radiation is determined by its frequency; ionizing radiation is high frequency, and therefore high energy, whereas non-ionizing radiation is low frequency, and therefore low energy. The NCI fact sheet Electromagnetic Fields and Cancer lists sources of radiofrequency radiation. More information about ionizing radiation can be found on the Radiation page.
×